Theory of Computation
The Class NP
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Search vs. Verification

Which tasks are easier?

» Writing a screenplay » Reviewing a movie

» Doing a homework » Grading a homework
assignment assignment

» Proving a new » Checking that a
theorem proof is valid

» Finding 1000 » Checking if 1000
Facebook users who Facebook users are
are all friends all friends

2 /30



3-CNF Formulas

Def: A 3-Conjunctive Normal Form (3-CNF)
formula is a CNF formula with at most 3 variables
in each clause

Which of the following formulas are 3-CNF
formulas?

(x1 Axo A x3)V (xa A X5 A\ Xp)
=1 VxVx3)A(xVxsVxs)

(x1 Vx2) A (—x1 V—x0) A (X3 V —1xq)
= (X1 V X V X3 V X4) VAN (_IX1 V _\X2)
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The language 3-SAT

3-SAT = {F|F is a satisfiable 3-CNF Formula}

Which of the following formulas are in 3-SAT?

A) F = (Xl\/—|X2\/X3)/\(—|X4\/X5)
B)F:(Xl/\XQ/\Xg)/\(X4/\X5/\X6)

C) F = (Xl\/Xl)/\(—\Xl\/_'Xl)

D) F:(Xl\/X2\/X3\/X4)/\(X1\/X2\/X3\/X4)
E) F = (Xl\/XQ\/Xg)/\(_|X4)/\(X2\/X6)/\(_'X1)
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3-SAT € EXP

Construct an exponential-time decider for 3-SAT

Input: Formula F with n variables and m clauses
1. For every possible truth assignment A do the
following:
1.1 Check if A satisfies the formula.
1.2 If it does, accept F

2. If every truth assignment fails, reject F
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3-SAT € EXP

Construct an exponential-time decider for 3-SAT

Input: Formula F with n variables and m clauses
1. For every possible truth assignment A do the
following:
1.1 Check if A satisfies the formula.
1.2 If it does, accept F

2. If every truth assignment fails, reject F

» 2" truth assignments (2 choices for each
variable)
» Can check whether an assignment works in

polynomial time

» O(2") - poly-time € EXP 5 /30



3-SAT € P?

» Can 3-SAT be solved in polynomial time?
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3-SAT € P?

WHO I(NIIWS:'*THAT S THEFUN!
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3-SAT € P?

» Can 3-SAT be solved in polynomial time?
» Generally believed to be impossible

» But we also have reason to believe that 3-SAT
is easier than some other problems in EXP

» 3-SAT can be verified in polynomial time
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3-SAT search vs. verification
Is the following 3-CNF formula satisfiable?

F=(x1VxoV-x3)A(=x1V XV xq)
N (X3 V _'X4) A (X2 V —IX1) N (X4)

Which of the following truth assignments satisfy F7?

A) x; = x, = TRUE, x3 = x4, = FALSE
B) x; = x, = TRUE, x; = x3 = FALSE
C) x1 = xp = x3 = x4, = FALSE
D) x; = x = x3 = x4 = TRUE
E) x, = x3 = x, = TRUE, x; = FALSE
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Verifiers

Let L be a formal language. A verifier for L is a
machine V with the following properties:

1. V takes two inputs: w and ¢

2. If w e L, then V accepts (w, c) for some
string ¢

3. If w ¢ L, then V rejects (w, c) for all ¢

The string ¢ is sometimes called a certificate,
witness, or proof that w € L
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Poly-time verifiers

» We say V is a poly(nomial)-time verifier if
it runs in polynomial time
» Note that this means that the certificate ¢

must be polynomially bounded
> | < [wl*

» We say L is poly(nomial)-time verifiable if it
has a poly-time verifier V

» This means that every w € L has a
polynomial-length certificate
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3-SAT is poly-time verifiable
We'll construct a poly-time verifier V
1. V takes input (F,A), where F is a 3-CNF

formula and A is a truth assignment
2. For each clause C; do the following:
2.1 For each variable x; in the clause, check if x; is
assigned to TRUE (or FALSE if x; is negated)
2.2 If none of the variables are TRUE, the clause is
not satisfied. Reject (F, A)

3. If all clauses are satisfied, accept (F, A)
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3-SAT is poly-time verifiable
We'll construct a poly-time verifier V
1. V takes input (F,A), where F is a 3-CNF
formula and A is a truth assignment

2. For each clause C; do the following:
2.1 For each variable x; in the clause, check if x; is
assigned to TRUE (or FALSE if x; is negated)
2.2 If none of the variables are TRUE, the clause is
not satisfied. Reject (F, A)

3. If all clauses are satisfied, accept (F, A)

Al = O(n) (one truth value per variable)
O(m) loop iterations
O(n) to look up the truth value of a variable
O(m - n) = poly-time verification
10/30
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Nondeterministic Machines

» Recall: We have seen nondeterministic finite
automata (NFAs) and nondeterministic Turing
machines (NTMs)

» At each step, the machine “guesses’ what the
optimal computation path is

» The machine accepts w if there exists at least
one accepting computation path

» Nondeterminism doesn’'t make our machines
more robust

» Does nondeterminism make our machines
faster?
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Nondeterministic Runtimes

» Deterministic machines always behave the
same way on the same input

» Nondeterministic machines may have different
behavior on the same input!

» Def: a nondeterministic TM runs in time T(n)
if all computation paths take at most O(T(n))
steps

» A nondeterministic TM runs in polynomial time if
the length of longest computation path is always
polynomially bounded

» It only takes a polynomial amount of time to
“guess” the solution
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Nondeterministic Runtimes

() Intermediate @ ACCEPT @ REJECT
Configuration

Runtime is the
length of the longest
computation path
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The class NP

» Def: The class NTIME(T(n)) is the set of all
languages that can be decided by a
nondeterministic TM in time T (n)

» Def: The class NP is the set of all languages
that can be decided in nondeterministic
polynomial time

NP = | NTIME(T(n"))

14 /30



3-SAT € NP

We will construct that a nondeterministic TM to
decide 3-SAT in polynomial time

Input: A formula F with n variables and m clauses
1. Nondeterministically guess truth assignment A
2. Check if A satisfies the formula F
3. Accept F if A satisfies F. Reject otherwise
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We will construct that a nondeterministic TM to
decide 3-SAT in polynomial time

Input: A formula F with n variables and m clauses
1. Nondeterministically guess truth assignment A
2. Check if A satisfies the formula F
3. Accept F if A satisfies F. Reject otherwise

Correctness
» If F is satisfiable, at least one computation

path will guess a satisfying assignment
» If F is not satisfiable, every computation path

will reject
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3-SAT € NP

We will construct that a nondeterministic TM to
decide 3-SAT in polynomial time

Input: A formula F with n variables and m clauses
1. Nondeterministically guess truth assignment A
2. Check if A satisfies the formula F
3. Accept F if A satisfies F. Reject otherwise

Runtime:
» O(n) time to guess a truth assignment
» Poly-time to check the truth assignment
» O(n) - poly-time € NP
15 /30



NP and verification

Let's re-examine the nondeterministic 3-SAT
algorithm

Input: A formula F with n variables and m clauses
1. Nondeterministically guess truth assignment A

2. Check if A satisfies the formula F
3. Accept F if A satisfies F. Reject otherwise
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NP and verification

Let's re-examine the nondeterministic 3-SAT
algorithm

Input: A formula F with n variables and m clauses
A string w

| Nord nisticall e :

Nondeterministically guess a certificate ¢

- Check if ‘A satisfies the formula F
Check if ¢ proves that w € L

3 C i A cqticfies F_Rei borwi

Accept if ¢ proves that w € L. Reject
otherwise

16 / 30



NP and verification

» Why is the nondeterministic 3-SAT algorithm
so efficient?
» While 3-SAT is hard to search, it is easy to
verify!
» The certificate that the machine needs to guess (a
satisfying assignment) is short
» After guessing the certificate, it is easy to verify
that the certificate is valid
» Nondeterministic machines are efficient
when there is a short, easily verified
certificate
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NP and verification

Theorem: A language L € NP if and only if it has
a polynomial-time verifier
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NP and verification

Theorem: A language L € NP if and only if it has
a polynomial-time verifier

(=)

>

Suppose L € NP. Then L is recognized by an
NTM M that runs in polynomial time
Construct a verifier V that takes a string w and
an accepting computation history H as input
Because M runs in poly-time, the length of
computation history is polynomially bounded
We can verify that H is a computation history
for which M accepts w in poly-time
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NP and verification

Theorem: A language L € NP if and only if it has
a polynomial-time verifier

(<)

» Suppose L has a poly-time verifier V

» Construct an NTM that takes a string w as
input, nondeterministically guesses a certificate
¢, and passes it to V to check if w € L

» Since V is a poly-time verifier, the certificate
has polynomial length and can be guessed in
poly-time

» Since V runs in poly-time, it takes poly-time to
check if ¢ proves that w € L
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The class NP — Recap

» NP is the set of languages that can be decided
in nondeterministic polynomial time

» Alternately, it is the set of languages that can
be verified in (deterministic) polynomial time

» To show that a language is in NP, it
suffices to show that a potential solution

to the problem can be checked for validity
in polynomial time
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The language IND-SE'T
» Def: Let G = (V,E) be a graph. A
independent set is a collection of vertices
| C V such that no two vertices are connected

P22 (P=(
o D
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The language IND-SE'T

» Def: Let G = (V, E) be a graph. A
independent set is a collection of vertices
| C V such that no two vertices are connected
» Search problem: Given a graph G, find the
largest independent set

» Decision problem: Given a graph G and an
integer k, determine if G has an independent
set set of size k

IND-SET = {(G, k)| G has a size k independent set}
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IND-SET € NP
Approach 1: Construct a poly-time verifier V
1. V takes (G, k,I) as input
2. Check that |/| > k

3. For every pair of vertices u, v € I, check that u
and v are not connected

4. If I is a valid independent set of size k, accept
(G, k, I); otherwise reject

22 /30
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IND-SET € NP

Approach 2: Construct a machine M that runs in
nondeterministic poly-time
1. Nondeterministically guess an independent set
| C V of size k
2. Check that none of the vertices in | are

connected
3. If I is an independent set of size k, accept G;

otherwise reject
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IND-SET € NP

Approach 2: Construct a machine M that runs in
nondeterministic poly-time
1. Nondeterministically guess an independent set
| C V of size k
2. Check that none of the vertices in | are
connected
3. If I is an independent set of size k, accept G;
otherwise reject

» O(n) to guess an independent set
» O(n?) to check if we guessed the right
independent set
» O(n)+ O(n?) € NP
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The language CLIQUE

» Def: Let G = (V, E) be a graph. A clique is
a collection of vertices C C V every pair of
vertices is connected
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The language CLIQUE

» Def: Let G = (V, E) be a graph. A clique is
a collection of vertices C C V every pair of
vertices is connected

» Search problem: Given a graph G, find the
largest clique

» Decision problem: Given a graph G and an
integer k, determine if G has a clique of size k

CLIQUE = {(G, k)| G has a size k clique}
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CLIQUE € NP

Approach 1: Construct a poly-time verifier V
1. V takes (G, k, C) as input
2. Check that |C| > k

3. For every pair of vertices u, v € C, check that
u and v are connected

4. If C is a valid clique of size k, accept
(G, k, C); otherwise reject
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CLIQUE € NP

Approach 2: Construct a machine M that runs in
nondeterministic poly-time

1. Nondeterministically guess a clique C C V of
size k

2. Check that all of the vertices in C are
connected

3. If C is a clique of size k, accept G; otherwise
reject
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CLIQUE € NP

Approach 2: Construct a machine M that runs in
nondeterministic poly-time

1.

\4

Nondeterministically guess a clique C C V of
size k

Check that all of the vertices in C are
connected

If C is a clique of size k, accept G; otherwise
reject

O(n) to guess a clique
O(n?) to check if we guessed the right clique
O(n) + O(n?) € NP
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The language SUBSET-SUM

SUBSET-SUM =

B is binary
<B, X1, X2, ... Xn> ‘there is a combination of x; (no repeats)
that add up to B

Example: (31,7,4,9,5,20)
Solution: 7+ 4 +20 =31V

Example: (101,6, 8, 10)
Solution: It is impossible; 6 + 8 + 10 = 24 < 101
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SUBSET-SUM € NP

Approach 1: Construct a poly-time verifier V

1.
2.
3.

4.
5.

V takes as input (B, x1, ... Xp, Y1 - Yk)

For each y;, check that y; € (x1, xo, . . . xx)

For each x;, check that x; is not used more
than once

Check that y1 + o+ ...k =B

If y1 + ...y, = B (and it forms a valid subset),
accept (B, x1,...Xp, y1- - Yk); otherwise reject.
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SUBSET-SUM € NP

Approach 1: Construct a poly-time verifier V

1.
2.
3.

o &

vvyvyy

V takes as input (B, x1, ... Xp, Y1 - Yk)

For each y;, check that y; € (x1, xo, . . . xx)

For each x;, check that x; is not used more
than once

Check that y1 + o+ ...k =B

If y1 + ...y, = B (and it forms a valid subset),
accept (B, x1,...Xp, y1- - Yk); otherwise reject.

O(n - k) comparisons = poly-time
O(n - k) comparisons = poly-time
Poly-time to add and compare numbers

Poly-time + poly-time + poly-time € NP
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SUBSET-SUM € NP

Approach 2: Construct a machine M that runs in
nondeterministic poly-time

1. Nondeterministically guess a subset

(1,2, - Yk) C (X1, %2, . . . Xn)
2. Check if y1 +...yx = B.
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SUBSET-SUM € NP

Approach 2: Construct a machine M that runs in
nondeterministic poly-time

1. Nondeterministically guess a subset

(1,2, - Yk) C (X1, %2, . . . Xn)
2. Check if y1 +...yx = B.

» O(n) to guess a subset

» poly-time to check if subset sum matches the
desired total

» O(n)- poly-time € NP
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P vs. NP

Does P = NP?

» Can every nondeterministic polynomial
time algorithm be converted to a
deterministic polynomial time algorithm?

» Are nondeterministic machines fundamentally
faster than deterministic machines?

» Can every efficient verification algorithm be
converted to an efficient search algorithm?
» s searching fundamentally harder than
verifying?
Activity: Search vs. Verification
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