Theory of Computation The Class NP

Which tasks are easier?

Which tasks are easier?



Which tasks are easier?

- Writing a screenplay
- Doing a homework assignment

- Reviewing a movie
- Grading a homework assignment

Which tasks are easier?

- Writing a screenplay
- Doing a homework assignment
- Proving a new theorem

- Reviewing a movie
- Grading a homework assignment
- Checking that a proof is valid

Which tasks are easier?

- Writing a screenplay
- Doing a homework assignment
- Proving a new theorem
- Finding 1000
 Facebook users who are all friends

- Reviewing a movie
- Grading a homework assignment
- Checking that a proof is valid
- Checking if 1000 Facebook users are all friends

Def: A **3-Conjunctive Normal Form (3-CNF)** formula is a CNF formula with at most 3 variables in each clause

Def: A **3-Conjunctive Normal Form (3-CNF)** formula is a CNF formula with at most 3 variables in each clause

Which of the following formulas are 3-CNF formulas?

A)
$$F = (x_1 \land x_2 \land x_3) \lor (x_4 \land x_5 \land x_6)$$

B) $F = (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_5)$
C) $F = (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_3 \lor \neg x_4)$
D) $F = (x_1 \lor x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2)$

Def: A **3-Conjunctive Normal Form (3-CNF)** formula is a CNF formula with at most 3 variables in each clause

Which of the following formulas are 3-CNF formulas?

A)
$$F = (x_1 \land x_2 \land x_3) \lor (x_4 \land x_5 \land x_6)$$

B) $F = (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_5) \checkmark$
C) $F = (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_3 \lor \neg x_4) \checkmark$
D) $F = (x_1 \lor x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2)$

The language 3-SAT

4 / 30

$3\text{-SAT} = \{F | F \text{ is a satisfiable } 3\text{-CNF Formula}\}$

4

The language 3-SAT

 $3-SAT = \{F | F \text{ is a satisfiable } 3-CNF \text{ Formula} \}$

Which of the following formulas are in 3-SAT?

A)
$$F = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_4 \lor x_5)$$

B) $F = (x_1 \land x_2 \land x_3) \land (x_4 \land x_5 \land x_6)$
C) $F = (x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1)$
D) $F = (x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_3 \lor x_4)$
E) $F = (x_1 \lor x_2 \lor x_3) \land (\neg x_4) \land (x_2 \lor x_6) \land (\neg x_1)$

The language 3-SAT

 $3-SAT = \{F | F \text{ is a satisfiable } 3-CNF \text{ Formula} \}$

Which of the following formulas are in 3-SAT?

A)
$$F = (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_4 \lor x_5) \checkmark$$

B) $F = (x_1 \land x_2 \land x_3) \land (x_4 \land x_5 \land x_6)$
C) $F = (x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1)$
D) $F = (x_1 \lor x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_3 \lor x_4)$
E) $F = (x_1 \lor x_2 \lor x_3) \land (\neg x_4) \land (x_2 \lor x_6) \land (\neg x_1) \checkmark$

$3\text{-SAT} \in \text{EXP}$

Construct an exponential-time decider for $3\text{-}\mathrm{SAT}$

Construct an exponential-time decider for $3\text{-}\mathrm{SAT}$

Input: Formula *F* with *n* variables and *m* clauses

5

Construct an exponential-time decider for $3\text{-}\mathrm{SAT}$

Input: Formula F with n variables and m clauses1. For every possible truth assignment A do the following:

Construct an exponential-time decider for $\operatorname{3-SAT}$

Input: Formula F with n variables and m clauses

1. For every possible truth assignment *A* do the following:

1.1 Check if A satisfies the formula.

Construct an exponential-time decider for 3-SAT

Input: Formula F with n variables and m clauses

- 1. For every possible truth assignment *A* do the following:
 - 1.1 Check if A satisfies the formula.
 - 1.2 If it does, accept F

Construct an exponential-time decider for 3-SAT

Input: Formula F with n variables and m clauses

- 1. For every possible truth assignment *A* do the following:
 - 1.1 Check if A satisfies the formula.
 - 1.2 If it does, accept F
- 2. If every truth assignment fails, reject F

Construct an exponential-time decider for 3-SAT

Input: Formula F with n variables and m clauses

- 1. For every possible truth assignment *A* do the following:
 - 1.1 Check if A satisfies the formula.
 - 1.2 If it does, accept F
- 2. If every truth assignment fails, reject F
- 2ⁿ truth assignments (2 choices for each variable)

Construct an exponential-time decider for 3-SAT

Input: Formula F with n variables and m clauses

- 1. For every possible truth assignment *A* do the following:
 - 1.1 Check if A satisfies the formula.
 - 1.2 If it does, accept F
- 2. If every truth assignment fails, reject F
- 2ⁿ truth assignments (2 choices for each variable)
- Can check whether an assignment works in polynomial time

Construct an exponential-time decider for 3-SAT

Input: Formula F with n variables and m clauses

- 1. For every possible truth assignment *A* do the following:
 - 1.1 Check if A satisfies the formula.
 - 1.2 If it does, accept F
- 2. If every truth assignment fails, reject F
- 2ⁿ truth assignments (2 choices for each variable)
- Can check whether an assignment works in polynomial time

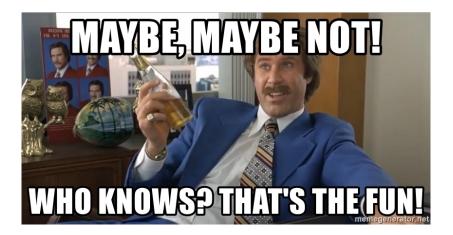
5

▶ $O(2^n) \cdot \text{poly-time} \in \text{EXP}$

$3\text{-SAT} \in \mathbf{P}$?

► Can 3-SAT be solved in polynomial time?

$3\text{-SAT} \in \mathbf{P}$?



Can 3-SAT be solved in polynomial time?

Generally believed to be impossible

$3\text{-SAT} \in \mathbf{P}$?

- ► Can 3-SAT be solved in polynomial time?
- Generally believed to be impossible
- But we also have reason to believe that 3-SAT is easier than some other problems in EXP

$3\text{-SAT} \in \mathbf{P}$?

- ► Can 3-SAT be solved in polynomial time?
- Generally believed to be impossible
- But we also have reason to believe that 3-SAT is easier than some other problems in EXP
- ▶ 3-SAT can be **verified** in polynomial time

3-SAT search vs. verification

Is the following 3-CNF formula satisfiable?

$$egin{aligned} \mathcal{F}=&(x_1ee x_2ee
eg x_3)\wedge (
eg x_1ee
eg x_2ee x_4)\ \wedge (x_3ee
eg x_4)\wedge (x_2ee
eg x_1)\wedge (x_4) \end{aligned}$$

7

3-SAT search vs. verification

Is the following 3-CNF formula satisfiable?

$$egin{aligned} \mathcal{F}=&(x_1ee x_2ee
eg x_3)\wedge (
eg x_1ee
eg x_2ee x_4)\ \wedge (x_3ee
eg x_4)\wedge (x_2ee
eg x_1)\wedge (x_4) \end{aligned}$$

Which of the following truth assignments satisfy F?

A)
$$x_1 = x_2 = \text{TRUE}, x_3 = x_4 = \text{FALSE}$$

B) $x_1 = x_4 = \text{TRUE}, x_2 = x_3 = \text{FALSE}$
C) $x_1 = x_2 = x_3 = x_4 = \text{FALSE}$
D) $x_1 = x_2 = x_3 = x_4 = \text{TRUE}$
E) $x_2 = x_3 = x_4 = \text{TRUE}, x_1 = \text{FALSE}$

3-SAT search vs. verification

Is the following 3-CNF formula satisfiable?

$$egin{aligned} \mathcal{F}=&(x_1ee x_2ee
eg x_3)\wedge (
eg x_1ee
eg x_2ee x_4)\ \wedge (x_3ee
eg x_4)\wedge (x_2ee
eg x_1)\wedge (x_4) \end{aligned}$$

Which of the following truth assignments satisfy F?

A)
$$x_1 = x_2 = \text{TRUE}, x_3 = x_4 = \text{FALSE}$$

B) $x_1 = x_4 = \text{TRUE}, x_2 = x_3 = \text{FALSE}$
C) $x_1 = x_2 = x_3 = x_4 = \text{FALSE}$
D) $x_1 = x_2 = x_3 = x_4 = \text{TRUE} \checkmark$
E) $x_2 = x_3 = x_4 = \text{TRUE}, x_1 = \text{FALSE} \checkmark$

Verifiers

Verifiers

Let L be a formal language. A **verifier** for L is a machine V with the following properties:

Verifiers

Let L be a formal language. A **verifier** for L is a machine V with the following properties:

1. V takes two inputs: w and c

Verifiers

Let L be a formal language. A **verifier** for L is a machine V with the following properties:

- 1. V takes two inputs: w and c
- 2. If $w \in L$, then V accepts $\langle w, c \rangle$ for some string c

Verifiers

Let L be a formal language. A **verifier** for L is a machine V with the following properties:

- 1. V takes two inputs: w and c
- 2. If $w \in L$, then V accepts $\langle w, c \rangle$ for some string c
- 3. If $w \notin L$, then V rejects $\langle w, c \rangle$ for all c

Verifiers

Let L be a formal language. A **verifier** for L is a machine V with the following properties:

- 1. V takes two inputs: w and c
- 2. If $w \in L$, then V accepts $\langle w, c \rangle$ for some string c
- 3. If $w \notin L$, then V rejects $\langle w, c \rangle$ for all c

The string *c* is sometimes called a **certificate**, witness, or **proof** that $w \in L$

We say V is a poly(nomial)-time verifier if it runs in polynomial time

- We say V is a poly(nomial)-time verifier if it runs in polynomial time
- Note that this means that the certificate c must be polynomially bounded

- We say V is a poly(nomial)-time verifier if it runs in polynomial time
- Note that this means that the certificate c must be polynomially bounded

 $\blacktriangleright |c| \le |w|^k$

- We say V is a poly(nomial)-time verifier if it runs in polynomial time
- Note that this means that the certificate c must be polynomially bounded

 $\blacktriangleright |c| \le |w|^k$

We say L is poly(nomial)-time verifiable if it has a poly-time verifier V

- We say V is a poly(nomial)-time verifier if it runs in polynomial time
- Note that this means that the certificate c must be polynomially bounded

 $|c| \leq |w|^k$

- We say L is poly(nomial)-time verifiable if it has a poly-time verifier V
 - ► This means that every w ∈ L has a polynomial-length certificate

$10 \, / \, 30$

3-SAT is poly-time verifiable We'll construct a poly-time verifier V

$10 \, / \, 30$

3-SAT is poly-time verifiable

We'll construct a poly-time verifier V

1. V takes input $\langle F, A \rangle$, where F is a 3-CNF formula and A is a truth assignment

- 1. V takes input $\langle F, A \rangle$, where F is a 3-CNF formula and A is a truth assignment
- 2. For each clause C_i do the following:

- 1. V takes input $\langle F, A \rangle$, where F is a 3-CNF formula and A is a truth assignment
- 2. For each clause C_i do the following:
 - 2.1 For each variable x_i in the clause, check if x_i is assigned to TRUE (or FALSE if x_i is negated)

- 1. V takes input $\langle F, A \rangle$, where F is a 3-CNF formula and A is a truth assignment
- 2. For each clause C_i do the following:
 - 2.1 For each variable x_i in the clause, check if x_i is assigned to TRUE (or FALSE if x_i is negated)
 - 2.2 If none of the variables are TRUE, the clause is not satisfied. Reject $\langle {\cal F}, {\cal A} \rangle$

- 1. V takes input $\langle F, A \rangle$, where F is a 3-CNF formula and A is a truth assignment
- 2. For each clause C_i do the following:
 - 2.1 For each variable x_i in the clause, check if x_i is assigned to TRUE (or FALSE if x_i is negated)
 - 2.2 If none of the variables are TRUE, the clause is not satisfied. Reject $\langle {\cal F}, {\cal A} \rangle$
- 3. If all clauses are satisfied, accept $\langle {\cal F}, {\cal A} \rangle$

We'll construct a poly-time verifier V

- 1. V takes input $\langle F, A \rangle$, where F is a 3-CNF formula and A is a truth assignment
- 2. For each clause C_i do the following:
 - 2.1 For each variable x_i in the clause, check if x_i is assigned to TRUE (or FALSE if x_i is negated)
 - 2.2 If none of the variables are TRUE, the clause is not satisfied. Reject $\langle {\cal F}, {\cal A} \rangle$

10

3. If all clauses are satisfied, accept $\langle F, A \rangle$

• |A| = O(n) (one truth value per variable)

We'll construct a poly-time verifier V

- 1. V takes input $\langle F, A \rangle$, where F is a 3-CNF formula and A is a truth assignment
- 2. For each clause C_i do the following:
 - 2.1 For each variable x_i in the clause, check if x_i is assigned to TRUE (or FALSE if x_i is negated)
 - 2.2 If none of the variables are TRUE, the clause is not satisfied. Reject $\langle {\cal F}, {\cal A} \rangle$

10

- 3. If all clauses are satisfied, accept $\langle F,A\rangle$
- |A| = O(n) (one truth value per variable)
 O(m) loop iterations

We'll construct a poly-time verifier V

- 1. V takes input $\langle F, A \rangle$, where F is a 3-CNF formula and A is a truth assignment
- 2. For each clause C_i do the following:
 - 2.1 For each variable x_i in the clause, check if x_i is assigned to TRUE (or FALSE if x_i is negated)
 - 2.2 If none of the variables are TRUE, the clause is not satisfied. Reject $\langle F, A \rangle$
- 3. If all clauses are satisfied, accept $\langle {\cal F}, {\cal A} \rangle$
- |A| = O(n) (one truth value per variable)
 O(m) loop iterations
- O(n) to look up the truth value of a variable

We'll construct a poly-time verifier V

- 1. V takes input $\langle F, A \rangle$, where F is a 3-CNF formula and A is a truth assignment
- 2. For each clause C_i do the following:
 - 2.1 For each variable x_i in the clause, check if x_i is assigned to TRUE (or FALSE if x_i is negated)
 - 2.2 If none of the variables are TRUE, the clause is not satisfied. Reject $\langle {\cal F}, {\cal A} \rangle$
- 3. If all clauses are satisfied, accept $\langle {\cal F}, {\cal A} \rangle$
- |A| = O(n) (one truth value per variable)
 O(m) loop iterations
- O(n) to look up the truth value of a variable

10

• $O(m \cdot n) =$ poly-time verification

 Recall: We have seen nondeterministic finite automata (NFAs) and nondeterministic Turing machines (NTMs)

- Recall: We have seen nondeterministic finite automata (NFAs) and nondeterministic Turing machines (NTMs)
- At each step, the machine "guesses" what the optimal computation path is

- Recall: We have seen nondeterministic finite automata (NFAs) and nondeterministic Turing machines (NTMs)
- At each step, the machine "guesses" what the optimal computation path is
- The machine accepts w if there exists at least one accepting computation path

- Recall: We have seen nondeterministic finite automata (NFAs) and nondeterministic Turing machines (NTMs)
- At each step, the machine "guesses" what the optimal computation path is
- The machine accepts w if there exists at least one accepting computation path
- Nondeterminism doesn't make our machines more *robust*

- Recall: We have seen nondeterministic finite automata (NFAs) and nondeterministic Turing machines (NTMs)
- At each step, the machine "guesses" what the optimal computation path is
- The machine accepts w if there exists at least one accepting computation path
- Nondeterminism doesn't make our machines more *robust*
- Does nondeterminism make our machines faster?

Deterministic machines *always* behave the same way on the same input

- Deterministic machines *always* behave the same way on the same input
- Nondeterministic machines may have different behavior on the same input!

- Deterministic machines *always* behave the same way on the same input
- Nondeterministic machines may have different behavior on the same input!
- Def: a nondeterministic TM runs in time T(n) if all computation paths take at most O(T(n)) steps

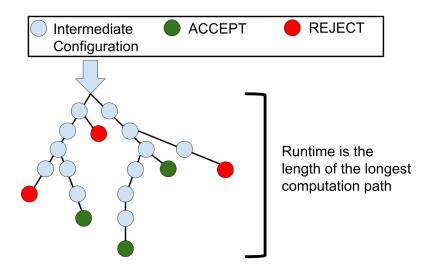
- Deterministic machines *always* behave the same way on the same input
- Nondeterministic machines may have different behavior on the same input!
- Def: a nondeterministic TM runs in time T(n) if all computation paths take at most O(T(n)) steps
 - A nondeterministic TM runs in polynomial time if the length of longest computation path is always polynomially bounded

 $12 \, / \, 30$

- Deterministic machines *always* behave the same way on the same input
- Nondeterministic machines may have different behavior on the same input!
- Def: a nondeterministic TM runs in time T(n) if all computation paths take at most O(T(n)) steps
 - A nondeterministic TM runs in polynomial time if the length of longest computation path is always polynomially bounded

12

It only takes a polynomial amount of time to "guess" the solution



The class NP

The class NP

Def: The class NTIME(T(n)) is the set of all languages that can be decided by a nondeterministic TM in time T(n)

The class NP

- Def: The class NTIME(T(n)) is the set of all languages that can be decided by a nondeterministic TM in time T(n)
- Def: The class NP is the set of all languages that can be decided in nondeterministic polynomial time

$$14 \, / \, 30$$

The class NP

- Def: The class NTIME(T(n)) is the set of all languages that can be decided by a nondeterministic TM in time T(n)
- Def: The class NP is the set of all languages that can be decided in nondeterministic polynomial time

$$NP = \bigcup_{c} NTIME(T(n^{c}))$$

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula *F* with *n* variables and *m* clauses

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula *F* with *n* variables and *m* clauses 1. *Nondeterministically guess* truth assignment *A*

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula F with n variables and m clauses
1. Nondeterministically guess truth assignment A
2. Check if A satisfies the formula F

15

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula F with n variables and m clauses

1. Nondeterministically guess truth assignment A

15

- 2. Check if A satisfies the formula F
- 3. Accept F if A satisfies F. Reject otherwise

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula F with n variables and m clauses

1. Nondeterministically guess truth assignment A

15

- 2. Check if A satisfies the formula F
- 3. Accept F if A satisfies F. Reject otherwise

Correctness

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula F with n variables and m clauses

- 1. Nondeterministically guess truth assignment A
- 2. Check if A satisfies the formula F
- 3. Accept F if A satisfies F. Reject otherwise

Correctness

If F is satisfiable, at least one computation path will guess a satisfying assignment

$3\text{-SAT} \in \mathbb{NP}$

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula F with n variables and m clauses

- 1. Nondeterministically guess truth assignment A
- 2. Check if A satisfies the formula F
- 3. Accept F if A satisfies F. Reject otherwise

Correctness

- If F is satisfiable, at least one computation path will guess a satisfying assignment
- If F is not satisfiable, every computation path will reject

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula F with n variables and m clauses

1. Nondeterministically guess truth assignment A

15

- 2. Check if A satisfies the formula F
- 3. Accept F if A satisfies F. Reject otherwise

Runtime:

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula F with n variables and m clauses

- 1. Nondeterministically guess truth assignment A
- 2. Check if A satisfies the formula F
- 3. Accept F if A satisfies F. Reject otherwise

Runtime:

► O(n) time to guess a truth assignment

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula F with n variables and m clauses

- 1. Nondeterministically guess truth assignment A
- 2. Check if A satisfies the formula F
- 3. Accept F if A satisfies F. Reject otherwise

Runtime:

- O(n) time to guess a truth assignment
- Poly-time to check the truth assignment

15

We will construct that a nondeterministic TM to decide $\operatorname{3-SAT}$ in polynomial time

Input: A formula F with n variables and m clauses

- 1. Nondeterministically guess truth assignment A
- 2. Check if A satisfies the formula F
- 3. Accept F if A satisfies F. Reject otherwise

Runtime:

- O(n) time to guess a truth assignment
- Poly-time to check the truth assignment

15

• $O(n) \cdot \text{poly-time} \in NP$

Let's re-examine the nondeterministic $\operatorname{3-SAT}$ algorithm

Input: A formula *F* with *n* variables and *m* clauses 1. *Nondeterministically guess* truth assignment *A*

- 2. Check if A satisfies the formula F
- 3. Accept F if A satisfies F. Reject otherwise

$16 \, / \, 30$

Let's re-examine the nondeterministic $\operatorname{3-SAT}$ algorithm

Input: A formula *F* with *n* variables and *m* clauses A string *w*

- 1. Nondeterministically guess truth assignment A Nondeterministically guess a certificate c
- 2. Check if A satisfies the formula FCheck if c proves that $w \in L$
- 3. Accept F if A satisfies F. Reject otherwise Accept if c proves that $w \in L$. Reject otherwise

 $16 \, / \, 30$

Why is the nondeterministic 3-SAT algorithm so efficient?

- Why is the nondeterministic 3-SAT algorithm so efficient?
- While 3-SAT is hard to search, it is easy to verify!

- Why is the nondeterministic 3-SAT algorithm so efficient?
- While 3-SAT is hard to search, it is easy to verify!
 - The certificate that the machine needs to guess (a satisfying assignment) is short

- Why is the nondeterministic 3-SAT algorithm so efficient?
- While 3-SAT is hard to search, it is easy to verify!
 - The certificate that the machine needs to guess (a satisfying assignment) is short
 - After guessing the certificate, it is easy to verify that the certificate is valid

- Why is the nondeterministic 3-SAT algorithm so efficient?
- While 3-SAT is hard to search, it is easy to verify!
 - The certificate that the machine needs to guess (a satisfying assignment) is short
 - After guessing the certificate, it is easy to verify that the certificate is valid
- Nondeterministic machines are efficient when there is a short, easily verified certificate

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

$18 \, / \, 30$

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

 (\Rightarrow)

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

 (\Rightarrow)

Suppose L ∈ NP. Then L is recognized by an NTM M that runs in polynomial time

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

- (\Rightarrow)
 - Suppose L ∈ NP. Then L is recognized by an NTM M that runs in polynomial time
 - Construct a verifier V that takes a string w and an accepting computation history H as input

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

- (\Rightarrow)
 - Suppose L ∈ NP. Then L is recognized by an NTM M that runs in polynomial time
 - Construct a verifier V that takes a string w and an accepting computation history H as input
 - Because *M* runs in poly-time, the length of computation history is polynomially bounded

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

- (\Rightarrow)
 - Suppose L ∈ NP. Then L is recognized by an NTM M that runs in polynomial time
 - Construct a verifier V that takes a string w and an accepting computation history H as input
 - Because *M* runs in poly-time, the length of computation history is polynomially bounded
 - We can verify that H is a computation history for which M accepts w in poly-time

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

(⇐) ► Suppose *L* has a poly-time verifier *V*

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

- (\Leftarrow)
 - Suppose L has a poly-time verifier V
 - Construct an NTM that takes a string w as input, nondeterministically guesses a certificate c, and passes it to V to check if w ∈ L

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

- (\Leftarrow)
 - Suppose L has a poly-time verifier V
 - Construct an NTM that takes a string w as input, nondeterministically guesses a certificate c, and passes it to V to check if w ∈ L
 - Since V is a poly-time verifier, the certificate has polynomial length and can be guessed in poly-time

Theorem: A language $L \in NP$ if and only if it has a polynomial-time verifier

- (\Leftarrow)
 - Suppose L has a poly-time verifier V
 - Construct an NTM that takes a string w as input, nondeterministically guesses a certificate c, and passes it to V to check if w ∈ L
 - Since V is a poly-time verifier, the certificate has polynomial length and can be guessed in poly-time
 - Since V runs in poly-time, it takes poly-time to check if c proves that w ∈ L

 NP is the set of languages that can be decided in nondeterministic polynomial time

- NP is the set of languages that can be decided in nondeterministic polynomial time
- Alternately, it is the set of languages that can be *verified* in (deterministic) polynomial time

- NP is the set of languages that can be decided in nondeterministic polynomial time
- Alternately, it is the set of languages that can be *verified* in (deterministic) polynomial time
- To show that a language is in NP, it suffices to show that a potential solution to the problem can be checked for validity in polynomial time

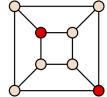
The language IND-SET

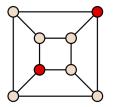
$21 \, / \, 30$

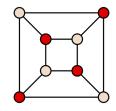
▶ Def: Let G = (V, E) be a graph. A independent set is a collection of vertices I ⊆ V such that no two vertices are connected

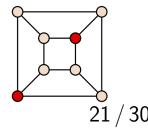
21

Def: Let G = (V, E) be a graph. A independent set is a collection of vertices I ⊆ V such that no two vertices are connected









- ▶ Def: Let G = (V, E) be a graph. A independent set is a collection of vertices I ⊆ V such that no two vertices are connected
- Search problem: Given a graph G, find the largest independent set

- Def: Let G = (V, E) be a graph. A independent set is a collection of vertices I ⊆ V such that no two vertices are connected
- Search problem: Given a graph G, find the largest independent set
- Decision problem: Given a graph G and an integer k, determine if G has an independent set set of size k

- Def: Let G = (V, E) be a graph. A independent set is a collection of vertices I ⊆ V such that no two vertices are connected
- Search problem: Given a graph G, find the largest independent set
- Decision problem: Given a graph G and an integer k, determine if G has an independent set set of size k

IND-SET = { $\langle G, k \rangle | G$ has a size k independent set}

21/30

22 / 30

$\text{IND-SET} \in \text{NP}$

Approach 1: Construct a poly-time verifier V 1. V takes $\langle G, k, I \rangle$ as input

$\text{IND-SET} \in \text{NP}$

Approach 1: Construct a poly-time verifier V

22

- 1. V takes $\langle G, k, I \rangle$ as input
- 2. Check that $|I| \ge k$

- 1. V takes $\langle G, k, I \rangle$ as input
- 2. Check that $|I| \ge k$
- 3. For every pair of vertices $u, v \in I$, check that u and v are not connected

- 1. V takes $\langle G, k, I \rangle$ as input
- 2. Check that $|I| \ge k$
- 3. For every pair of vertices $u, v \in I$, check that u and v are not connected
- 4. If *I* is a valid independent set of size *k*, accept $\langle G, k, I \rangle$; otherwise reject

- 1. V takes $\langle G, k, I \rangle$ as input
- 2. Check that $|I| \ge k$
- 3. For every pair of vertices $u, v \in I$, check that u and v are not connected
- 4. If *I* is a valid independent set of size *k*, accept $\langle G, k, I \rangle$; otherwise reject
- Certificate size |I| is O(n)

- 1. V takes $\langle G, k, I \rangle$ as input
- 2. Check that $|I| \ge k$
- 3. For every pair of vertices $u, v \in I$, check that u and v are not connected
- 4. If *I* is a valid independent set of size *k*, accept $\langle G, k, I \rangle$; otherwise reject
- Certificate size |I| is O(n)
- $O(n^2)$ pairs of vertices to check

- 1. V takes $\langle G, k, I \rangle$ as input
- 2. Check that $|I| \ge k$
- 3. For every pair of vertices $u, v \in I$, check that u and v are not connected
- 4. If I is a valid independent set of size k, accept $\langle G, k, I \rangle$; otherwise reject
- Certificate size |I| is O(n)
- $O(n^2)$ pairs of vertices to check
- Verifier runs in polynomial time

Approach 2: Construct a machine *M* that runs in nondeterministic poly-time

$23 \, / \, 30$

- 1. Nondeterministically guess an independent set
 - $I \subseteq V$ of size k

- 1. Nondeterministically guess an independent set $I \subset V$ of size k
- 2. Check that none of the vertices in *I* are connected

- 1. Nondeterministically guess an independent set $I \subseteq V$ of size k
- 2. Check that none of the vertices in *I* are connected
- 3. If *I* is an independent set of size *k*, accept *G*; otherwise reject

- 1. Nondeterministically guess an independent set $I \subseteq V$ of size k
- 2. Check that none of the vertices in *I* are connected
- 3. If *I* is an independent set of size *k*, accept *G*; otherwise reject
- O(n) to guess an independent set

Approach 2: Construct a machine *M* that runs in nondeterministic poly-time

- 1. Nondeterministically guess an independent set $I \subseteq V$ of size k
- 2. Check that none of the vertices in *I* are connected
- 3. If *I* is an independent set of size *k*, accept *G*; otherwise reject
- O(n) to guess an independent set
 O(n²) to check if we guessed the right independent set

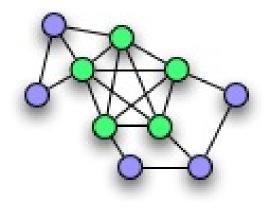
23 / 30

- 1. Nondeterministically guess an independent set $I \subseteq V$ of size k
- 2. Check that none of the vertices in *I* are connected
- 3. If *I* is an independent set of size *k*, accept *G*; otherwise reject
- O(n) to guess an independent set
 O(n²) to check if we guessed the right independent set
- ► $O(n) + O(n^2) \in NP$

24 / 30

▶ Def: Let G = (V, E) be a graph. A clique is a collection of vertices C ⊆ V every pair of vertices is connected

▶ Def: Let G = (V, E) be a graph. A clique is a collection of vertices C ⊆ V every pair of vertices is connected



- ▶ Def: Let G = (V, E) be a graph. A clique is a collection of vertices C ⊆ V every pair of vertices is connected
- Search problem: Given a graph G, find the largest clique

- ▶ Def: Let G = (V, E) be a graph. A clique is a collection of vertices C ⊆ V every pair of vertices is connected
- Search problem: Given a graph G, find the largest clique
- Decision problem: Given a graph G and an integer k, determine if G has a clique of size k

- ▶ Def: Let G = (V, E) be a graph. A clique is a collection of vertices C ⊆ V every pair of vertices is connected
- Search problem: Given a graph G, find the largest clique
- Decision problem: Given a graph G and an integer k, determine if G has a clique of size k

$$CLIQUE = \{\langle G, k \rangle | G \text{ has a size k clique} \}$$

24 / 30

25 / 30

Approach 1: Construct a poly-time verifier V

$25 \, / \, 30$

Approach 1: Construct a poly-time verifier V1. V takes $\langle G, k, C \rangle$ as input

- 1. V takes $\langle G, k, C \rangle$ as input
- 2. Check that $|C| \ge k$

- 1. V takes $\langle G, k, C \rangle$ as input
- 2. Check that $|C| \ge k$
- 3. For every pair of vertices $u, v \in C$, check that u and v are connected

- 1. V takes $\langle G, k, C \rangle$ as input
- 2. Check that $|C| \ge k$
- 3. For every pair of vertices $u, v \in C$, check that u and v are connected
- 4. If C is a valid clique of size k, accept $\langle G, k, C \rangle$; otherwise reject

- 1. V takes $\langle G, k, C \rangle$ as input
- 2. Check that $|C| \ge k$
- 3. For every pair of vertices $u, v \in C$, check that u and v are connected
- 4. If C is a valid clique of size k, accept $\langle G, k, C \rangle$; otherwise reject
- Certificate size |C| is O(n)

- 1. V takes $\langle G, k, C \rangle$ as input
- 2. Check that $|C| \ge k$
- 3. For every pair of vertices $u, v \in C$, check that u and v are connected
- 4. If C is a valid clique of size k, accept $\langle G, k, C \rangle$; otherwise reject
- Certificate size |C| is O(n)
- $O(n^2)$ pairs of vertices to check

- 1. V takes $\langle G, k, C \rangle$ as input
- 2. Check that $|C| \ge k$
- 3. For every pair of vertices $u, v \in C$, check that u and v are connected
- 4. If C is a valid clique of size k, accept $\langle G, k, C \rangle$; otherwise reject
- Certificate size |C| is O(n)
- $O(n^2)$ pairs of vertices to check
- Verifier runs in polynomial time

Approach 2: Construct a machine *M* that runs in nondeterministic poly-time

$26 \, / \, 30$

Approach 2: Construct a machine *M* that runs in nondeterministic poly-time

1. Nondeterministically guess a clique $C \subseteq V$ of size k

- 1. Nondeterministically guess a clique $C \subseteq V$ of size k
- 2. Check that all of the vertices in *C* are connected

- 1. Nondeterministically guess a clique $C \subseteq V$ of size k
- 2. Check that all of the vertices in *C* are connected
- 3. If C is a clique of size k, accept G; otherwise reject

- 1. Nondeterministically guess a clique $C \subseteq V$ of size k
- 2. Check that all of the vertices in *C* are connected
- 3. If C is a clique of size k, accept G; otherwise reject
- O(n) to guess a clique

- 1. Nondeterministically guess a clique $C \subseteq V$ of size k
- 2. Check that all of the vertices in *C* are connected
- 3. If C is a clique of size k, accept G; otherwise reject
- O(n) to guess a clique
 O(n²) to check if we guessed the right clique

Approach 2: Construct a machine *M* that runs in nondeterministic poly-time

- 1. Nondeterministically guess a clique $C \subseteq V$ of size k
- 2. Check that all of the vertices in *C* are connected
- 3. If C is a clique of size k, accept G; otherwise reject
- O(n) to guess a clique
 O(n²) to check if we guessed the right clique
 O(n) + O(n²) ∈ NP

$\begin{array}{l} {\rm SUBSET-SUM} = & & \\ \left\{ \langle B, x_1, x_2, \dots x_n \rangle | \text{there is a combination of } x_i \text{ (no repeats)} \right\} \\ & & \\$

$$\begin{array}{l} \mathrm{SUBSET}\text{-}\mathrm{SUM} = & & & & & \\ & & & & \\ \left\{ \langle B, x_1, x_2, \dots x_n \rangle | & & \text{there is a combination of } x_i \text{ (no repeats)} \right\} \\ & & & & & \text{that add up to B} \end{array} \right\}$$

Example: (31, 7, 4, 9, 5, 20)**Solution:** $7 + 4 + 20 = 31\sqrt{20}$

$$\begin{array}{l} \mathrm{SUBSET}\text{-}\mathrm{SUM} = & & & & & \\ \left\{ \langle B, x_1, x_2, \dots x_n \rangle | & & \text{there is a combination of } x_i \text{ (no repeats)} \\ & & & & & \text{that add up to B} \end{array} \right\} \end{array}$$

Example:
$$(31, 7, 4, 9, 5, 20)$$

Solution: $7 + 4 + 20 = 31\checkmark$

Example: (101, 6, 8, 10)**Solution:** It is impossible; 6 + 8 + 10 = 24 < 101

Approach 1: Construct a poly-time verifier V

Approach 1: Construct a poly-time verifier V

1. *V* takes as input $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$

- 1. V takes as input $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$
- 2. For each y_i , check that $y_i \in (x_1, x_2, \ldots x_k)$

- 1. V takes as input $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$
- 2. For each y_i , check that $y_i \in (x_1, x_2, \ldots x_k)$
- 3. For each x_i, check that x_i is not used more than once

- 1. V takes as input $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$
- 2. For each y_i , check that $y_i \in (x_1, x_2, \ldots x_k)$
- 3. For each x_i, check that x_i is not used more than once
- 4. Check that $y_1 + y_2 + ... y_k = B$

- 1. V takes as input $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$
- 2. For each y_i , check that $y_i \in (x_1, x_2, \ldots x_k)$
- 3. For each x_i, check that x_i is not used more than once
- 4. Check that $y_1 + y_2 + \ldots y_k = B$
- 5. If $y_1 + \ldots y_n = B$ (and it forms a valid subset), accept $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$; otherwise reject.

- 1. V takes as input $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$
- 2. For each y_i , check that $y_i \in (x_1, x_2, \ldots x_k)$
- 3. For each x_i, check that x_i is not used more than once
- 4. Check that $y_1 + y_2 + \ldots y_k = B$
- 5. If $y_1 + \ldots y_n = B$ (and it forms a valid subset), accept $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$; otherwise reject.
- $O(n \cdot k)$ comparisons = poly-time

- 1. V takes as input $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$
- 2. For each y_i , check that $y_i \in (x_1, x_2, \ldots x_k)$
- 3. For each x_i , check that x_i is not used more than once
- 4. Check that $y_1 + y_2 + \ldots y_k = B$
- 5. If $y_1 + \ldots y_n = B$ (and it forms a valid subset), accept $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$; otherwise reject.
- O(n · k) comparisons = poly-time
 O(n · k) comparisons = poly-time

- 1. V takes as input $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$
- 2. For each y_i , check that $y_i \in (x_1, x_2, \ldots x_k)$
- 3. For each x_i, check that x_i is not used more than once
- 4. Check that $y_1 + y_2 + ... y_k = B$
- 5. If $y_1 + \ldots y_n = B$ (and it forms a valid subset), accept $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$; otherwise reject.
- O(n · k) comparisons = poly-time
 O(n · k) comparisons = poly-time
 Poly-time to add and compare numbers

- 1. V takes as input $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$
- 2. For each y_i , check that $y_i \in (x_1, x_2, \ldots x_k)$
- 3. For each x_i, check that x_i is not used more than once
- 4. Check that $y_1 + y_2 + \ldots y_k = B$
- 5. If $y_1 + \ldots y_n = B$ (and it forms a valid subset), accept $\langle B, x_1, \ldots x_n, y_1 \ldots y_k \rangle$; otherwise reject.
- $O(n \cdot k)$ comparisons = poly-time
- $O(n \cdot k)$ comparisons = poly-time
- Poly-time to add and compare numbers
- $\blacktriangleright \text{ Poly-time} + \text{poly-time} + \text{poly-time} \in \mathrm{NP}$

Approach 2: Construct a machine *M* that runs in nondeterministic poly-time

$29 \, / \, 30$

Approach 2: Construct a machine *M* that runs in nondeterministic poly-time

1. Nondeterministically guess a subset $(y_1, y_2, \dots y_k) \subseteq (x_1, x_2, \dots x_n)$

- 1. Nondeterministically guess a subset $(y_1, y_2, \dots y_k) \subseteq (x_1, x_2, \dots x_n)$
- 2. Check if $y_1 + \ldots y_k = B$.

- 1. Nondeterministically guess a subset $(y_1, y_2, \dots y_k) \subseteq (x_1, x_2, \dots x_n)$
- 2. Check if $y_1 + \ldots y_k = B$.
- O(n) to guess a subset

- 1. Nondeterministically guess a subset $(y_1, y_2, \dots y_k) \subseteq (x_1, x_2, \dots x_n)$
- 2. Check if $y_1 + ... y_k = B$.
- O(n) to guess a subset
- poly-time to check if subset sum matches the desired total

Approach 2: Construct a machine *M* that runs in nondeterministic poly-time

- 1. Nondeterministically guess a subset $(y_1, y_2, \dots y_k) \subseteq (x_1, x_2, \dots x_n)$
- 2. Check if $y_1 + \ldots y_k = B$.
- O(n) to guess a subset
- poly-time to check if subset sum matches the desired total
- ▶ O(n)· poly-time \in NP

Does P = NP?

Can every nondeterministic polynomial time algorithm be converted to a deterministic polynomial time algorithm?

- Can every nondeterministic polynomial time algorithm be converted to a deterministic polynomial time algorithm?
- Are nondeterministic machines fundamentally faster than deterministic machines?

- Can every nondeterministic polynomial time algorithm be converted to a deterministic polynomial time algorithm?
- Are nondeterministic machines fundamentally faster than deterministic machines?
- Can every efficient verification algorithm be converted to an efficient search algorithm?

- Can every nondeterministic polynomial time algorithm be converted to a deterministic polynomial time algorithm?
- Are nondeterministic machines fundamentally faster than deterministic machines?
- Can every efficient verification algorithm be converted to an efficient search algorithm?
- Is searching fundamentally harder than verifying?

Does P = NP?

- Can every nondeterministic polynomial time algorithm be converted to a deterministic polynomial time algorithm?
- Are nondeterministic machines fundamentally faster than deterministic machines?
- Can every efficient verification algorithm be converted to an efficient search algorithm?
- Is searching fundamentally harder than verifying?
- Activity: Search vs. Verification