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Search vs. Verification

Which tasks are easier?

I Writing a screenplay

I Doing a homework
assignment

I Proving a new
theorem

I Finding 1000
Facebook users who
are all friends

I Reviewing a movie

I Grading a homework
assignment

I Checking that a
proof is valid

I Checking if 1000
Facebook users are
all friends
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3-CNF Formulas

Def: A 3-Conjunctive Normal Form (3-CNF)
formula is a CNF formula with at most 3 variables
in each clause

Which of the following formulas are 3-CNF
formulas?

A) F = (x1 ∧ x2 ∧ x3) ∨ (x4 ∧ x5 ∧ x6)
B) F = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x5 ∨ x5)

X

C) F = (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x3 ∨ ¬x4)

X

D) F = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x2)
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The language 3-SAT

3-SAT = {F |F is a satisfiable 3-CNF Formula}

Which of the following formulas are in 3-SAT?

A) F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5)

X

B) F = (x1 ∧ x2 ∧ x3) ∧ (x4 ∧ x5 ∧ x6)
C) F = (x1 ∨ x1) ∧ (¬x1 ∨ ¬x1)
D) F = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)
E) F = (x1 ∨ x2 ∨ x3) ∧ (¬x4) ∧ (x2 ∨ x6) ∧ (¬x1)

X
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3-SAT ∈ EXP

Construct an exponential-time decider for 3-SAT

Input: Formula F with n variables and m clauses

1. For every possible truth assignment A do the
following:

1.1 Check if A satisfies the formula.
1.2 If it does, accept F

2. If every truth assignment fails, reject F

I 2n truth assignments (2 choices for each
variable)

I Can check whether an assignment works in
polynomial time

I O(2n) · poly-time ∈ EXP
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3-SAT ∈ P?

I Can 3-SAT be solved in polynomial time?

I Generally believed to be impossible

I But we also have reason to believe that 3-SAT
is easier than some other problems in EXP

I 3-SAT can be verified in polynomial time
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3-SAT search vs. verification
Is the following 3-CNF formula satisfiable?

F =(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4)

∧ (x3 ∨ ¬x4) ∧ (x2 ∨ ¬x1) ∧ (x4)

Which of the following truth assignments satisfy F?

A) x1 = x2 = TRUE, x3 = x4 = FALSE
B) x1 = x4 = TRUE, x2 = x3 = FALSE
C) x1 = x2 = x3 = x4 = FALSE
D) x1 = x2 = x3 = x4 = TRUE

X

E) x2 = x3 = x4 = TRUE, x1 = FALSE

X
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Verifiers

Let L be a formal language. A verifier for L is a
machine V with the following properties:

1. V takes two inputs: w and c

2. If w ∈ L, then V accepts 〈w , c〉 for some
string c

3. If w /∈ L, then V rejects 〈w , c〉 for all c

The string c is sometimes called a certificate,
witness, or proof that w ∈ L
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Poly-time verifiers

I We say V is a poly(nomial)-time verifier if
it runs in polynomial time

I Note that this means that the certificate c
must be polynomially bounded

I |c | ≤ |w |k

I We say L is poly(nomial)-time verifiable if it
has a poly-time verifier V

I This means that every w ∈ L has a
polynomial-length certificate
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3-SAT is poly-time verifiable

We’ll construct a poly-time verifier V

1. V takes input 〈F ,A〉, where F is a 3-CNF
formula and A is a truth assignment

2. For each clause Ci do the following:

2.1 For each variable xi in the clause, check if xi is
assigned to TRUE (or FALSE if xi is negated)

2.2 If none of the variables are TRUE, the clause is
not satisfied. Reject 〈F ,A〉

3. If all clauses are satisfied, accept 〈F ,A〉

I |A| = O(n) (one truth value per variable)
I O(m) loop iterations
I O(n) to look up the truth value of a variable
I O(m · n) = poly-time verification
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Nondeterministic Machines

I Recall: We have seen nondeterministic finite
automata (NFAs) and nondeterministic Turing
machines (NTMs)

I At each step, the machine “guesses” what the
optimal computation path is

I The machine accepts w if there exists at least
one accepting computation path

I Nondeterminism doesn’t make our machines
more robust

I Does nondeterminism make our machines
faster?
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Nondeterministic Runtimes

I Deterministic machines always behave the
same way on the same input

I Nondeterministic machines may have different
behavior on the same input!

I Def: a nondeterministic TM runs in time T (n)
if all computation paths take at most O(T (n))
steps

I A nondeterministic TM runs in polynomial time if
the length of longest computation path is always
polynomially bounded

I It only takes a polynomial amount of time to
“guess” the solution
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The class NP

I Def: The class NTIME(T (n)) is the set of all
languages that can be decided by a
nondeterministic TM in time T (n)

I Def: The class NP is the set of all languages
that can be decided in nondeterministic
polynomial time

NP =
⋃
c

NTIME(T (nc))
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3-SAT ∈ NP

We will construct that a nondeterministic TM to
decide 3-SAT in polynomial time

Input: A formula F with n variables and m clauses

1. Nondeterministically guess truth assignment A

2. Check if A satisfies the formula F

3. Accept F if A satisfies F . Reject otherwise
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3. Accept F if A satisfies F . Reject otherwise

Correctness

I If F is satisfiable, at least one computation
path will guess a satisfying assignment

I If F is not satisfiable, every computation path
will reject
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2. Check if A satisfies the formula F

3. Accept F if A satisfies F . Reject otherwise

Runtime:

I O(n) time to guess a truth assignment
I Poly-time to check the truth assignment
I O(n) · poly-time ∈ NP

15 / 30



3-SAT ∈ NP
We will construct that a nondeterministic TM to
decide 3-SAT in polynomial time

Input: A formula F with n variables and m clauses

1. Nondeterministically guess truth assignment A

2. Check if A satisfies the formula F

3. Accept F if A satisfies F . Reject otherwise

Runtime:
I O(n) time to guess a truth assignment

I Poly-time to check the truth assignment
I O(n) · poly-time ∈ NP

15 / 30



3-SAT ∈ NP
We will construct that a nondeterministic TM to
decide 3-SAT in polynomial time

Input: A formula F with n variables and m clauses

1. Nondeterministically guess truth assignment A

2. Check if A satisfies the formula F

3. Accept F if A satisfies F . Reject otherwise

Runtime:
I O(n) time to guess a truth assignment
I Poly-time to check the truth assignment

I O(n) · poly-time ∈ NP

15 / 30



3-SAT ∈ NP
We will construct that a nondeterministic TM to
decide 3-SAT in polynomial time

Input: A formula F with n variables and m clauses

1. Nondeterministically guess truth assignment A

2. Check if A satisfies the formula F

3. Accept F if A satisfies F . Reject otherwise

Runtime:
I O(n) time to guess a truth assignment
I Poly-time to check the truth assignment
I O(n) · poly-time ∈ NP

15 / 30



NP and verification

Let’s re-examine the nondeterministic 3-SAT
algorithm

Input: A formula F with n variables and m clauses

1. Nondeterministically guess truth assignment A

2. Check if A satisfies the formula F

3. Accept F if A satisfies F . Reject otherwise
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NP and verification
Let’s re-examine the nondeterministic 3-SAT
algorithm

Input: A formula F with n variables and m clauses
A string w

1. Nondeterministically guess truth assignment A
Nondeterministically guess a certificate c

2. Check if A satisfies the formula F
Check if c proves that w ∈ L

3. Accept F if A satisfies F . Reject otherwise
Accept if c proves that w ∈ L. Reject
otherwise
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NP and verification

I Why is the nondeterministic 3-SAT algorithm
so efficient?

I While 3-SAT is hard to search, it is easy to
verify!

I The certificate that the machine needs to guess (a
satisfying assignment) is short

I After guessing the certificate, it is easy to verify
that the certificate is valid

I Nondeterministic machines are efficient
when there is a short, easily verified
certificate

17 / 30



NP and verification

I Why is the nondeterministic 3-SAT algorithm
so efficient?

I While 3-SAT is hard to search, it is easy to
verify!

I The certificate that the machine needs to guess (a
satisfying assignment) is short

I After guessing the certificate, it is easy to verify
that the certificate is valid

I Nondeterministic machines are efficient
when there is a short, easily verified
certificate

17 / 30



NP and verification

I Why is the nondeterministic 3-SAT algorithm
so efficient?

I While 3-SAT is hard to search, it is easy to
verify!

I The certificate that the machine needs to guess (a
satisfying assignment) is short

I After guessing the certificate, it is easy to verify
that the certificate is valid

I Nondeterministic machines are efficient
when there is a short, easily verified
certificate

17 / 30



NP and verification

I Why is the nondeterministic 3-SAT algorithm
so efficient?

I While 3-SAT is hard to search, it is easy to
verify!
I The certificate that the machine needs to guess (a

satisfying assignment) is short

I After guessing the certificate, it is easy to verify
that the certificate is valid

I Nondeterministic machines are efficient
when there is a short, easily verified
certificate

17 / 30



NP and verification

I Why is the nondeterministic 3-SAT algorithm
so efficient?

I While 3-SAT is hard to search, it is easy to
verify!
I The certificate that the machine needs to guess (a

satisfying assignment) is short
I After guessing the certificate, it is easy to verify

that the certificate is valid

I Nondeterministic machines are efficient
when there is a short, easily verified
certificate

17 / 30



NP and verification

I Why is the nondeterministic 3-SAT algorithm
so efficient?

I While 3-SAT is hard to search, it is easy to
verify!
I The certificate that the machine needs to guess (a

satisfying assignment) is short
I After guessing the certificate, it is easy to verify

that the certificate is valid

I Nondeterministic machines are efficient
when there is a short, easily verified
certificate

17 / 30



NP and verification
Theorem: A language L ∈ NP if and only if it has
a polynomial-time verifier

(⇒)

I Suppose L ∈ NP. Then L is recognized by an
NTM M that runs in polynomial time

I Construct a verifier V that takes a string w and
an accepting computation history H as input

I Because M runs in poly-time, the length of
computation history is polynomially bounded

I We can verify that H is a computation history
for which M accepts w in poly-time
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NP and verification
Theorem: A language L ∈ NP if and only if it has
a polynomial-time verifier

(⇐)
I Suppose L has a poly-time verifier V

I Construct an NTM that takes a string w as
input, nondeterministically guesses a certificate
c , and passes it to V to check if w ∈ L

I Since V is a poly-time verifier, the certificate
has polynomial length and can be guessed in
poly-time

I Since V runs in poly-time, it takes poly-time to
check if c proves that w ∈ L
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The class NP – Recap

I NP is the set of languages that can be decided
in nondeterministic polynomial time

I Alternately, it is the set of languages that can
be verified in (deterministic) polynomial time

I To show that a language is in NP, it
suffices to show that a potential solution
to the problem can be checked for validity
in polynomial time
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The language IND-SET

I Def: Let G = (V ,E ) be a graph. A
independent set is a collection of vertices
I ⊆ V such that no two vertices are connected

I Search problem: Given a graph G , find the
largest independent set

I Decision problem: Given a graph G and an
integer k , determine if G has an independent
set set of size k

IND-SET = {〈G , k〉|G has a size k independent set}
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IND-SET ∈ NP

Approach 1: Construct a poly-time verifier V

1. V takes 〈G , k , I 〉 as input

2. Check that |I | ≥ k

3. For every pair of vertices u, v ∈ I , check that u
and v are not connected

4. If I is a valid independent set of size k , accept
〈G , k , I 〉; otherwise reject

I Certificate size |I | is O(n)

I O(n2) pairs of vertices to check

I Verifier runs in polynomial time
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IND-SET ∈ NP
Approach 2: Construct a machine M that runs in
nondeterministic poly-time

1. Nondeterministically guess an independent set
I ⊆ V of size k

2. Check that none of the vertices in I are
connected

3. If I is an independent set of size k , accept G ;
otherwise reject
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I O(n2) to check if we guessed the right

independent set
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The language CLIQUE

I Def: Let G = (V ,E ) be a graph. A clique is
a collection of vertices C ⊆ V every pair of
vertices is connected

I Search problem: Given a graph G , find the
largest clique

I Decision problem: Given a graph G and an
integer k , determine if G has a clique of size k

CLIQUE = {〈G , k〉|G has a size k clique}
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CLIQUE ∈ NP

Approach 1: Construct a poly-time verifier V

1. V takes 〈G , k ,C 〉 as input

2. Check that |C | ≥ k

3. For every pair of vertices u, v ∈ C , check that
u and v are connected

4. If C is a valid clique of size k , accept
〈G , k ,C 〉; otherwise reject

I Certificate size |C | is O(n)

I O(n2) pairs of vertices to check

I Verifier runs in polynomial time
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CLIQUE ∈ NP
Approach 2: Construct a machine M that runs in
nondeterministic poly-time

1. Nondeterministically guess a clique C ⊆ V of
size k

2. Check that all of the vertices in C are
connected

3. If C is a clique of size k , accept G ; otherwise
reject

I O(n) to guess a clique
I O(n2) to check if we guessed the right clique
I O(n) + O(n2) ∈ NP
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The language SUBSET-SUM

SUBSET-SUM ={
〈B , x1, x2, . . . xn〉|

B is binary
there is a combination of xi (no repeats)

that add up to B

}

Example: 〈31, 7, 4, 9, 5, 20〉
Solution: 7 + 4 + 20 = 31X

Example: 〈101, 6, 8, 10〉
Solution: It is impossible; 6 + 8 + 10 = 24 < 101
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SUBSET-SUM ∈ NP
Approach 1: Construct a poly-time verifier V

1. V takes as input 〈B , x1, . . . xn, y1 . . . yk〉
2. For each yi , check that yi ∈ (x1, x2, . . . xk)
3. For each xi , check that xi is not used more

than once
4. Check that y1 + y2 + . . . yk = B
5. If y1 + . . . yn = B (and it forms a valid subset),

accept 〈B , x1, . . . xn, y1 . . . yk〉; otherwise reject.

I O(n · k) comparisons = poly-time
I O(n · k) comparisons = poly-time
I Poly-time to add and compare numbers
I Poly-time + poly-time + poly-time ∈ NP
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SUBSET-SUM ∈ NP

Approach 2: Construct a machine M that runs in
nondeterministic poly-time

1. Nondeterministically guess a subset
(y1, y2, . . . yk) ⊆ (x1, x2, . . . xn)

2. Check if y1 + . . . yk = B .

I O(n) to guess a subset

I poly-time to check if subset sum matches the
desired total

I O(n)· poly-time ∈ NP
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P vs. NP

Does P = NP?

I Can every nondeterministic polynomial
time algorithm be converted to a
deterministic polynomial time algorithm?

I Are nondeterministic machines fundamentally
faster than deterministic machines?

I Can every efficient verification algorithm be
converted to an efficient search algorithm?

I Is searching fundamentally harder than
verifying?

Activity: Search vs. Verification
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