Theory of Computation Complexity classes, P, EXP

In other CS classes, we might ask what problems can we solve in a particular runtime (e.g. O(n), $O(n^2)$, etc.)

- In other CS classes, we might ask what problems can we solve in a particular runtime (e.g. O(n), $O(n^2)$, etc.)
- In this class, we are more interested in coarser classifications

- In other CS classes, we might ask what problems can we solve in a particular runtime (e.g. O(n), $O(n^2)$, etc.)
- In this class, we are more interested in coarser classifications
 - what problems require the same "level/tier" of resources

- In other CS classes, we might ask what problems can we solve in a particular runtime (e.g. O(n), $O(n^2)$, etc.)
- In this class, we are more interested in coarser classifications
 - what problems require the same "level/tier" of resources
 - Which problems can be solved "efficiently"?

- In other CS classes, we might ask what problems can we solve in a particular runtime (e.g. O(n), $O(n^2)$, etc.)
- In this class, we are more interested in coarser classifications
 - what problems require the same "level/tier" of resources
 - ▶ Which problems can be solved "efficiently"?
 - What problems can't be solved efficiently?

► **Recall:** a language is a set of strings

- Recall: a language is a set of strings
- ▶ **Def:** a **complexity class** is a set of *languages*

- Recall: a language is a set of strings
- ▶ **Def:** a **complexity class** is a set of *languages*
- We have already seen some complexity classes:

- Recall: a language is a set of strings
- ▶ **Def:** a **complexity class** is a set of *languages*
- We have already seen some complexity classes:
 - ► REG: the regular languages

- Recall: a language is a set of strings
- ▶ **Def:** a **complexity class** is a set of *languages*
- ▶ We have already seen some complexity classes:
 - ► REG: the regular languages
 - D: the decidable languages

- Recall: a language is a set of strings
- ▶ **Def:** a **complexity class** is a set of *languages*
- We have already seen some complexity classes:
 - ► REG: the regular languages
 - ▶ D: the decidable languages
 - ▶ RE: the recursively enumerable languages

- Recall: a language is a set of strings
- ▶ **Def:** a **complexity class** is a set of *languages*
- ▶ We have already seen some complexity classes:
 - ► REG: the regular languages
 - ► D: the decidable languages
 - ▶ RE: the recursively enumerable languages
- Some of these classes are bigger than others!

- Recall: a language is a set of strings
- ▶ **Def:** a **complexity class** is a set of *languages*
- ▶ We have already seen some complexity classes:
 - ► REG: the regular languages
 - ► D: the decidable languages
 - ▶ RE: the recursively enumerable languages
- Some of these classes are bigger than others!

▶ Let $T : \mathbb{N} \to \mathbb{N}$ be a runtime function

- ▶ Let $T: \mathbb{N} \to \mathbb{N}$ be a runtime function
- ▶ **Def:** The class TIME(T(n)) is the set of all languages that can be decided by a machine that runs in O(T(n)) time

- ▶ Let $T: \mathbb{N} \to \mathbb{N}$ be a runtime function
- ▶ **Def:** The class TIME(T(n)) is the set of all languages that can be decided by a machine that runs in O(T(n)) time
- ▶ The language $L = \{0^k 1^k | k \ge 0\} \in TIME(n^2)$

- ▶ Let $T: \mathbb{N} \to \mathbb{N}$ be a runtime function
- ▶ **Def:** The class TIME(T(n)) is the set of all languages that can be decided by a machine that runs in O(T(n)) time
- ▶ The language $L = \{0^k 1^k | k \ge 0\} \in TIME(n^2)$
 - ▶ In fact, $L \in TIME(n \log(n))$ see Sipser

We want a working definition what it means for a problem to be solved "efficiently"

- We want a working definition what it means for a problem to be solved "efficiently"
- ▶ **Def:** The class P is the set of all languages that can be decided in polynomial time

- We want a working definition what it means for a problem to be solved "efficiently"
- ▶ **Def:** The class P is the set of all languages that can be decided in polynomial time
 - \triangleright $O(n^c)$ for some constant c

- We want a working definition what it means for a problem to be solved "efficiently"
- ▶ **Def:** The class P is the set of all languages that can be decided in polynomial time
 - \triangleright $O(n^c)$ for some constant c
- Alternate definition:

$$P = \bigcup_{c} TIME(T(n^{c}))$$

- We want a working definition what it means for a problem to be solved "efficiently"
- ▶ **Def:** The class P is the set of all languages that can be decided in polynomial time
 - $ightharpoonup O(n^c)$ for some constant c
- Alternate definition:

$$P = \bigcup_{c} TIME(T(n^{c}))$$

In this course, we will use P as a proxy for "tractable" problems

► The numeric value of a number isn't the same as the length of its encoding!

- ► The numeric value of a number isn't the same as the length of its encoding!
- Let's consider the number n = 16

- ➤ The numeric value of a number isn't the same as the length of its encoding!
- Let's consider the number n = 16

- The numeric value of a number isn't the same as the length of its encoding!
- Let's consider the number n = 16
- ▶ Binary encoding: $\langle 16 \rangle = \underbrace{10000}_{|\langle n \rangle| \in O(\log(n))}$ $n \in O(2^{|\langle n \rangle|})$

- The numeric value of a number isn't the same as the length of its encoding!
- Let's consider the number n = 16
- ▶ Binary encoding: $\langle 16 \rangle = \underbrace{10000}_{|\langle n \rangle| \in O(\log(n))}$ $n \in O(2^{|\langle n \rangle|})$
- An 8-byte unary integer cannot represent numbers bigger than 32!!!

- ➤ The numeric value of a number isn't the same as the length of its encoding!
- Let's consider the number n = 16
- ▶ Binary encoding: $\langle 16 \rangle = \underbrace{10000}_{|\langle n \rangle| \in O(\log(n))}$ $n \in O(2^{|\langle n \rangle|})$
- An 8-byte unary integer cannot represent numbers bigger than 32!!!
- ▶ If the input is in binary (or base 10 or base 16), we have to be careful about runtime analysis

Runtime with numeric inputs

What is the running time of this algorithm?

- 1. Receive a number $\langle N \rangle$ as input in binary
- 2. For i = 2...(N-1):
 - 2.1 If N % i == 0, immediately reject
- 3. If we finish the loop, accept

Runtime with numeric inputs

What is the running time of this algorithm?

- 1. Receive a number $\langle N \rangle$ as input in binary
- 2. For i = 2...(N 1): 2.1 If N % i == 0, immediately reject
- 3. If we finish the loop, accept
- ightharpoonup O(N) loop iterations

Runtime with numeric inputs

What is the running time of this algorithm?

- 1. Receive a number $\langle N \rangle$ as input in binary
- 2. For i = 2...(N-1):
 - 2.1 If N % i == 0, immediately reject
- 3. If we finish the loop, accept
- \triangleright O(N) loop iterations
- $|\langle N \rangle| = O(\log(N))$

What is the running time of this algorithm?

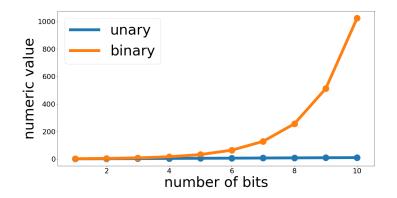
- 1. Receive a number $\langle N \rangle$ as input in binary
- 2. For i = 2...(N-1):
 - 2.1 If N % i == 0, immediately reject
- 3. If we finish the loop, accept
- \triangleright O(N) loop iterations
- $|\langle N \rangle| = O(\log(N))$
- $ightharpoonup N = 2^{|\langle N \rangle|}$

What is the running time of this algorithm?

- 1. Receive a number $\langle N \rangle$ as input in binary
- 2. For i = 2...(N-1):
 - 2.1 If N % i == 0, immediately reject
- 3. If we finish the loop, accept
- \triangleright O(N) loop iterations
- $ightharpoonup |\langle N \rangle| = O(\log(N))$
- $ightharpoonup N = 2^{|\langle N \rangle|}$
- $ightharpoonup O(2^{|\langle N \rangle|})$ loop iterations!!!

What is the running time of this algorithm?

- 1. Receive a number $\langle N \rangle$ as input in binary
- 2. For i = 2...(N-1):
 - 2.1 If N % i == 0, immediately reject
- 3. If we finish the loop, accept
- \triangleright O(N) loop iterations
- $|\langle N \rangle| = O(\log(N))$
- $ightharpoonup N = 2^{|\langle N \rangle|}$
- $ightharpoonup O(2^{|\langle N \rangle|})$ loop iterations!!!
- This is exponential in the length of the input!!!



COPRIMES =
$$\{\langle x, y \rangle | \gcd(x, y) = 1\}$$

We receive two binary numbers as input

$$COPRIMES = \{\langle x, y \rangle | \gcd(x, y) = 1\}$$

- We receive two binary numbers as input
- We want to check if they have any common factors (besides 1)

$$COPRIMES = \{\langle x, y \rangle | \gcd(x, y) = 1\}$$

- We receive two binary numbers as input
- We want to check if they have any common factors (besides 1)
- ▶ Naive approach: for i = 1, ..., min(x, y), check if i is a common factor, and output the maximum common factor found

$$COPRIMES = \{\langle x, y \rangle | \gcd(x, y) = 1\}$$

- We receive two binary numbers as input
- We want to check if they have any common factors (besides 1)
- ▶ Naive approach: for i = 1, ..., min(x, y), check if i is a common factor, and output the maximum common factor found
- ▶ This is O(n) in the value of x and y...

$$COPRIMES = \{\langle x, y \rangle | \gcd(x, y) = 1\}$$

- We receive two binary numbers as input
- We want to check if they have any common factors (besides 1)
- ▶ Naive approach: for i = 1, ..., min(x, y), check if i is a common factor, and output the maximum common factor found
- ▶ This is O(n) in the value of x and y...
- ightharpoonup ...which is $O(2^n)$ in the *length* of $\langle x,y\rangle$

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

1. If x < y, swap x and y

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - 2.1 $x \leftarrow x \% y$

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - 2.1 $x \leftarrow x \% y$
 - 2.2 Swap x and y

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - 2.1 $x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject

$$78 \div 66 = 1 \text{ remainder } 12$$
 (78 = 66 × 1 + 12)

 $66 \div 12 = 5 \text{ remainder } 6$ (66 = 12 × 5 + 6)

 $12 \div 6 = 2 \text{ remainder } 0$ (12 = 6 × 2 + 0)

 $6 = \text{Greatest Common Factor}$

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - $2.1 \ x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject

Claim: This step cuts x in half

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - $2.1 \ x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject

Claim: This step cuts x in half

► Case 1: $y \le \frac{x}{2}$. Then $x \% y < y \le \frac{x}{2}$

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - $2.1 \ x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject

Claim: This step cuts x in half

- ► **Case 1:** $y \le \frac{x}{2}$. Then $x \% y < y \le \frac{x}{2}$
- ► Case 2: $y > \frac{x}{2}$. Then $x \% y = x y < \frac{x}{2}$

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - $2.1 x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject

Claim: There are $O(n = |\langle x, y \rangle|)$ loop iterations

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - 2.1 $x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject

Claim: There are $O(n = |\langle x, y \rangle|)$ loop iterations

After two iterations, both x and y have been cut in half

We will use the **Euclidean Algorithm** – possibly the oldest recorded algorithm

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - 2.1 $x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject

Claim: There are $O(n = |\langle x, y \rangle|)$ loop iterations

- ► After two iterations, both *x* and *y* have been cut in half
- The number of times we can cut the input in half is $log(max\{x,y\}) = O(|\langle x,y\rangle|)$

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - 2.1 $x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject
- Modular reduction (and other arithmetic) can be calculated in polynomial time

- 1. If x < y, swap x and y
- 2. Repeat until y = 0:
 - 2.1 $x \leftarrow x \% y$
 - 2.2 Swap x and y
- 3. If x = 1, accept $\langle x, y \rangle$; otherwise reject
- Modular reduction (and other arithmetic) can be calculated in polynomial time
- ▶ O(n) loop iterations $\times O(n^c)$ steps per loop iteration = $O(n^c) \in P$

```
 \begin{cases} \mathrm{UNARY\text{-}SUBSET\text{-}SUM} = \\ \left\{ \langle B|x_1, x_2, \dots x_n \rangle \middle| \text{there is a combination of } x_i \text{ (no repeats)} \right\} \\ \text{that add up to B}  \end{cases}
```

Example: $\langle 31|7, 4, 9, 5, 20 \rangle$ **Solution:** $7 + 4 + 20 = 31 \checkmark$

Example: $\langle 31|7, 4, 9, 5, 20 \rangle$ **Solution:** $7 + 4 + 20 = 31 \checkmark$

Example: (101|6, 8, 10)

Solution: It is impossible; 6 + 8 + 10 = 24 < 101

Which of the following sets are part of UNARY-SUBSET-SUM?

A. $\langle 0|1, 2, 3, 4, 5\rangle$

B. $\langle 13|3,3,3 \rangle$

C. $\langle 40|13, 26, 15, 24 \rangle$

D. $\langle 45|2, 3, 10, 17, 30 \rangle$

Which of the following sets are part of UNARY-SUBSET-SUM?

- **A.** $\langle 0|1, 2, 3, 4, 5 \rangle$ \checkmark
- **B.** $\langle 13|3,3,3 \rangle$
- **C.** $\langle 40|13, 26, 15, 24 \rangle$
- **D.** $\langle 45|2, 3, 10, 17, 30 \rangle$ \checkmark

Technique: dynamic programming

Technique: dynamic programming

1. $A \leftarrow (n+1) \times (B+1)$ matrix.

Technique: dynamic programming

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE

Technique: dynamic programming

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE
- 3. For i = 1 ... n:

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE
- 3. For $i = 1 \dots n$: 3.1 For $j = 1 \dots B$:

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE
- 3. For $i = 1 \dots n$: 3.1 For $j = 1 \dots B$: 3.1.1 If A[i-1,j] = TRUE, or if $j \ge x_i$ and $A[i-1,j-x_i] = \text{TRUE}$, set A[i] to TRUE

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE
- 3. For i=1...n: 3.1 For j=1...B: 3.1.1 If A[i-1,j] = TRUE, or if $j \ge x_i$ and $A[i-1,j-x_i] = \text{TRUE}$, set A[i] to TRUE
- 4. If A[n, B] = TRUE, accept $\langle B, x_1, \dots, x_n \rangle$. Otherwise, reject

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE
- 3. For i=1...n: 3.1 For j=1...B: 3.1.1 If A[i-1,j]=TRUE, or if $j\geq x_i$ and $A[i-1,j-x_i]=\text{TRUE}$, set A[i] to TRUE
- 4. If A[n, B] = TRUE, accept $\langle B, x_1, \dots, x_n \rangle$. Otherwise, reject
- \triangleright O(n) outer loop iterations

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE
- 3. For i=1...n: 3.1 For j=1...B: 3.1.1 If A[i-1,j] = TRUE, or if $j \ge x_i$ and $A[i-1,j-x_i] = \text{TRUE}$, set A[i] to TRUE
- 4. If A[n, B] = TRUE, accept $\langle B, x_1, \dots, x_n \rangle$. Otherwise, reject
- \triangleright O(n) outer loop iterations
- ▶ O(B) inner loop iterations = $O(|\langle B \rangle|)$ since the input is unary

- 1. $A \leftarrow (n+1) \times (B+1)$ matrix.
- 2. Initialize A[i, 0] to TRUE for all i; Initialize all other elements to FALSE
- 3. For $i = 1 \dots n$: 3.1 For $j = 1 \dots B$: 3.1.1 If A[i-1,j] = TRUE, or if $j \ge x_i$ and $A[i-1,j-x_i] = \text{TRUE}$, set A[i] to TRUE
- 4. If A[n, B] = TRUE, accept $\langle B, x_1, \dots, x_n \rangle$. Otherwise, reject
- \triangleright O(n) outer loop iterations
- ▶ O(B) inner loop iterations = $O(|\langle B \rangle|)$ since the input is unary
- $ightharpoonup O(B \cdot n) \in \overline{P}$

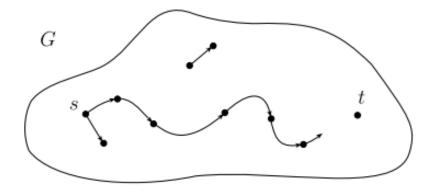
The language PATH

The language PATH

 $PATH = \{ \langle G, s, t \rangle | G \text{ is a digraph with an s-t path} \}$

The language PATH

 $PATH = \{\langle G, s, t \rangle | G \text{ is a digraph with an s-t path} \}$



Technique: Perform a breadth-first search

1. Mark node s

- 1. Mark node s
- 2. Repeat the following until now additional nodes are marked

- 1. Mark node s
- Repeat the following until now additional nodes are marked
 - 2.1 Scan all edges. If there is an edge (u, v) where u is marked and v is unmarked, mark v

- 1. Mark node s
- 2. Repeat the following until now additional nodes are marked
 - 2.1 Scan all edges. If there is an edge (u, v) where u is marked and v is unmarked, mark v
- 3. If t is marked, accept $\langle G, s, t \rangle$. Otherwise, reject.

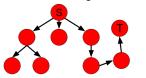
- 1. Mark node s
- 2. Repeat the following until now additional nodes are marked
 - 2.1 Scan all edges. If there is an edge (u, v) where u is marked and v is unmarked, mark v
- 3. If t is marked, accept $\langle G, s, t \rangle$. Otherwise, reject.
- ightharpoonup O(|V|) rounds

- 1. Mark node s
- Repeat the following until now additional nodes are marked
 - 2.1 Scan all edges. If there is an edge (u, v) where u is marked and v is unmarked, mark v
- 3. If t is marked, accept $\langle G, s, t \rangle$. Otherwise, reject.
- ightharpoonup O(|V|) rounds
- ightharpoonup O(|E|) edge lookups per round

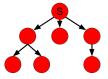
- 1. Mark node s
- Repeat the following until now additional nodes are marked
 - 2.1 Scan all edges. If there is an edge (u, v) where u is marked and v is unmarked, mark v
- 3. If t is marked, accept $\langle G, s, t \rangle$. Otherwise, reject.
- ightharpoonup O(|V|) rounds
- ightharpoonup O(|E|) edge lookups per round
- $ightharpoonup O(|V| \cdot |E|) \in P$

1. Mark vertex S

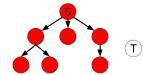
3. Continue until T gets marked...

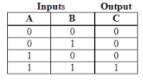


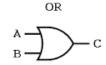
2. Mark all neighbors of S (and their neighbors, and so on)



4. ...or until we can't mark further

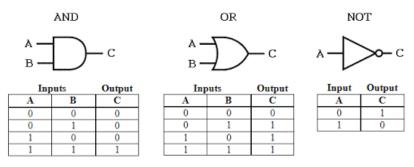




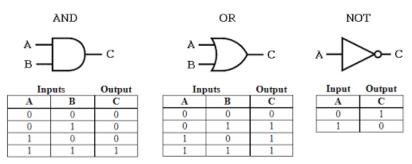


uts	Output
В	C
0	0
1	1
0	1
1	1
	0 1 0 1

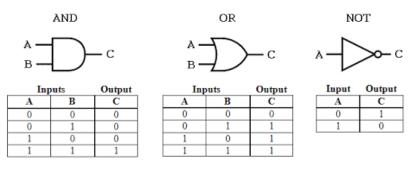
Input	Output
A	C
0	1
1	0



► AND (∧): all inputs must be TRUE



- \blacktriangleright AND (\land): all inputs must be TRUE
- $ightharpoonup \mathrm{OR}\ (\lor)$: at least one input must be TRUE



- \blacktriangleright AND (\land): all inputs must be TRUE
- $ightharpoonup \mathrm{OR}$ (\lor): at least one input must be TRUE
- ► NOT (¬): input must be FALSE

Logical symbol practice

Suppose x = TRUE, y = TRUE, z = FALSE. Which of the following expressions are TRUE?

A) x **E)** $(x \lor y) \land (y \lor z)$

B) z **F)** $\neg x \lor (\neg y \lor \neg z)$

6) (x \ x \) \ (y \ z)

C) $y \lor z$ **G)** $(x \land y) \land (y \land z)$

D) $\neg(x \land y)$ **H)** $(x \lor y) \land (z \lor z \lor z)$

Logical symbol practice

Suppose x = TRUE, y = TRUE, z = FALSE.Which of the following expressions are TRUE?

E)
$$(x \lor y) \land (y \lor z) \checkmark$$

F)
$$\neg x \lor (\neg y \lor \neg z) \checkmark$$

C)
$$y \lor z \checkmark$$

D) $\neg (x \wedge y)$

G)
$$(x \wedge y) \wedge (y \wedge z)$$

$$\mathbf{H}) (x \vee y) \wedge (z \vee z \vee z)$$

Def: A **Conjunctive Normal Form (CNF) formula** is an expression of the following form:

Def: A **Conjunctive Normal Form (CNF) formula** is an expression of the following form:

1. Disjunction of several clauses

$$F = C_1 \wedge C_2 \wedge \dots C_n$$

Def: A **Conjunctive Normal Form (CNF) formula** is an expression of the following form:

1. Disjunction of several clauses

$$F = C_1 \wedge C_2 \wedge \dots C_n$$

2. Each clause is conjunction of several variables

$$C_i = (x_{i_1} \vee x_{i_2} \vee \ldots x_{i_n})$$

Def: A **Conjunctive Normal Form (CNF) formula** is an expression of the following form:

1. Disjunction of several clauses

$$F = C_1 \wedge C_2 \wedge \dots C_n$$

2. Each clause is conjunction of several variables

$$C_i = (x_{i_1} \vee x_{i_2} \vee \ldots x_{i_n})$$

3. Each variable can be either positive x_i or negative $\neg x_i$

Def: A **Conjunctive Normal Form (CNF) formula** is an expression of the following form:

1. Disjunction of several clauses

$$F = C_1 \wedge C_2 \wedge \dots C_n$$

2. Each clause is conjunction of several variables

$$C_i = (x_{i_1} \vee x_{i_2} \vee \ldots x_{i_n})$$

3. Each variable can be either positive x_i or negative $\neg x_i$

Examples:

Def: A **Conjunctive Normal Form (CNF) formula** is an expression of the following form:

1. Disjunction of several clauses

$$F = C_1 \wedge C_2 \wedge \dots C_n$$

2. Each clause is conjunction of several variables

$$C_i = (x_{i_1} \vee x_{i_2} \vee \ldots x_{i_n})$$

3. Each variable can be either positive x_i or negative $\neg x_i$

Examples:

$$(x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5)$$

Def: A **Conjunctive Normal Form (CNF) formula** is an expression of the following form:

1. Disjunction of several clauses

$$F = C_1 \wedge C_2 \wedge \dots C_n$$

2. Each clause is conjunction of several **variables**

$$C_i = (x_{i_1} \vee x_{i_2} \vee \ldots x_{i_n})$$

3. Each variable can be either positive x_i or negative $\neg x_i$

Examples:

- $\blacktriangleright (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5)$
- $(x_1 \vee \neg x_1) \wedge (x_2 \vee x_3 \vee x_4 \vee x_5 \vee \neg x_1) \wedge (\neg x_2)$

Which of the following expressions are in conjunctive normal form?

```
A) (x_1)

B) (x_2)

C) (\neg x_1 \lor \neg x_1)

D) \neg (x_1 \lor x_1)

E) (x_1 \land x_2 \land x_3) \lor (x_4 \land x_5)

F) (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6)

G) (x_1 \lor x_2 \lor x_3) \lor (\neg x_1 \lor \neg x_2)

H) (x_1 \land x_2 \land x_3) \land (\neg x_1 \land \neg x_2)
```

Which of the following expressions are in conjunctive normal form?

```
A) (x_1) \checkmark

B) (x_2) \checkmark

C) (\neg x_1 \lor \neg x_1) \checkmark

D) \neg (x_1 \lor x_1)

E) (x_1 \land x_2 \land x_3) \lor (x_4 \land x_5)

F) (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \checkmark

G) (x_1 \lor x_2 \lor x_3) \lor (\neg x_1 \lor \neg x_2)

H) (x_1 \land x_2 \land x_3) \land (\neg x_1 \land \neg x_2)
```

▶ **Def:** A **truth assignment** sets every variable to either TRUE or FALSE

- ▶ **Def:** A **truth assignment** sets every variable to either TRUE or FALSE
 - ▶ **Note:** If x_i is FALSE then $\neg x_i$ is TRUE

- ▶ **Def:** A **truth assignment** sets every variable to either TRUE or FALSE
 - ▶ **Note:** If x_i is FALSE then $\neg x_i$ is TRUE
- ► A CNF clause is **satisfied** if at least one of its variables is TRUE

- ▶ **Def:** A **truth assignment** sets every variable to either TRUE or FALSE
 - ▶ **Note:** If x_i is FALSE then $\neg x_i$ is TRUE
- ➤ A CNF clause is **satisfied** if at least one of its variables is TRUE
- A CNF formula is satisfied if all of its clauses are satisfied

- ▶ **Def:** A **truth assignment** sets every variable to either TRUE or FALSE
 - ▶ **Note:** If x_i is FALSE then $\neg x_i$ is TRUE
- ➤ A CNF clause is **satisfied** if at least one of its variables is TRUE
- A CNF formula is satisfied if all of its clauses are satisfied
- ► A CNF formula is **satisfiable** if there *exists* a satisfying assignment

$$F = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (x_2) \land (\neg x_5 \lor \neg x_1)$$

$$x_1 = x_4 = x_5 = \text{TRUE}$$

 $x_2 = x_3 = \text{FALSE}$

Which clauses are satisfied?

- **A)** $(x_1 \lor x_2 \lor x_3)$
- **B)** $(\neg x_1 \lor x_3 \lor x_4)$
- **C)** (x_2)
- **D)** $(\neg x_5 \lor \neg x_1)$

$$F = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (x_2) \land (\neg x_5 \lor \neg x_1)$$

$$x_1 = x_4 = x_5 = \text{TRUE}$$

 $x_2 = x_3 = \text{FALSE}$

Which clauses are satisfied?

- **A)** $(x_1 \lor x_2 \lor x_3) \checkmark$
- **B)** $(\neg x_1 \lor x_3 \lor x_4) \checkmark$
- **C)** (x_2)
- **D)** $(\neg x_5 \lor \neg x_1)$

CNF Satisfiability

$$x_1 = x_4 = x_5 = \text{TRUE}$$

 $x_2 = x_3 = \text{FALSE}$

Which of the following formulas are satisfied?

A)
$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_4 \lor x_5)$$

B)
$$F = (x_1 \lor \neg x_2 \lor x_3 \lor \neg x_4) \land (x_5)$$

C)
$$F = (x_1) \land (x_2) \land (x_3) \land (x_4) \land (x_5)$$

D)
$$F = (\neg x_1 \lor \neg x_4 \lor x_5) \land (x_2 \lor x_3)$$

CNF Satisfiability

$$x_1 = x_4 = x_5 = \text{TRUE}$$

 $x_2 = x_3 = \text{FALSE}$

Which of the following formulas are satisfied?

A)
$$F = (x_1 \lor x_2 \lor \neg x_3) \land (x_4 \lor x_5) \checkmark$$

$$\mathbf{B)} \ F = (x_1 \vee \neg x_2 \vee x_3 \vee \neg x_4) \wedge (x_5) \checkmark$$

C)
$$F = (x_1) \land (x_2) \land (x_3) \land (x_4) \land (x_5)$$

D)
$$F = (\neg x_1 \lor \neg x_4 \lor x_5) \land (x_2 \lor x_3)$$

Which of the following formulas are satisfiable?

A)
$$F = (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6)$$

$$\mathbf{B)} \ F = (x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2 \vee \neg x_3)$$

C)
$$F = (x_1) \land (\neg x_2)$$

D)
$$F = (x_1) \land (\neg x_1)$$

Which of the following formulas are satisfiable?

A)
$$F = (x_1 \lor x_2 \lor x_3) \land (x_4 \lor x_5 \lor x_6) \checkmark$$

$$\mathbf{B)} \ F = (x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_2 \vee \neg x_3) \checkmark$$

C)
$$F = (x_1) \land (\neg x_2) \checkmark$$

D)
$$F = (x_1) \land (\neg x_1)$$

CNF Satisiability

Is the following formula satisfiable?

$$(x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_1 \lor \neg x_3)$$

CNF Satisiability

Is the following formula satisfiable?

$$(x_1 \vee x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge (x_1 \vee x_2) \wedge (\neg x_1 \vee x_3) \wedge (x_1 \vee \neg x_3)$$

These four clauses can't all be satisfied!

Def: A **2-CNF Formula** is a CNF formula with at most 2 variables in each clause

Def: A **2-CNF Formula** is a CNF formula with at most 2 variables in each clause

 $2-SAT = \{F|F \text{ is a satisfiable 2-CNF formula}\}$

Def: A **2-CNF Formula** is a CNF formula with at most 2 variables in each clause

$$2\text{-SAT} = \{F|F \text{ is a satisfiable 2-CNF formula}\}$$

Which of these formulas are in the language 2-SAT?

- **A)** $(x_1 \lor x_2) \land (x_3 \lor x_4)$ **B)** $(x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1)$ **C)** $(x_1) \land (x_2) \land (x_3)$
- **D)** $(x_1 \lor x_2 \lor x_3)$

Def: A **2-CNF Formula** is a CNF formula with at most 2 variables in each clause

$$2-SAT = \{F|F \text{ is a satisfiable 2-CNF formula}\}$$

Which of these formulas are in the language $2\text{-}\mathrm{SAT}$?

A)
$$(x_1 \lor x_2) \land (x_3 \lor x_4) \checkmark$$

B) $(x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1)$
C) $(x_1) \land (x_2) \land (x_3) \checkmark$
D) $(x_1 \lor x_2 \lor x_3)$

$$F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee x_1)$$

Consider the following formula:

$$F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee x_1)$$

▶ If x_1 is FALSE then x_2 must be FALSE

$$F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee x_1)$$

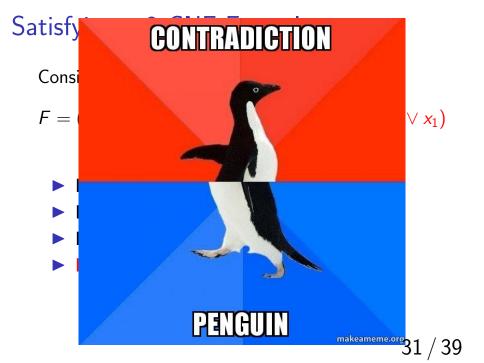
- ▶ If x_1 is FALSE then x_2 must be FALSE
- ▶ If x_2 is FALSE, then x_3 must be TRUE

$$F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee x_1)$$

- ▶ If x_1 is FALSE then x_2 must be FALSE
- ▶ If x_2 is FALSE, then x_3 must be TRUE
- ▶ If x_3 is TRUE then x_4 must be FALSE

$$F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee x_1)$$

- ▶ If x_1 is FALSE then x_2 must be FALSE
- ▶ If x_2 is FALSE, then x_3 must be TRUE
- ▶ If x_3 is TRUE then x_4 must be FALSE
- ▶ If x_4 is FALSE then x_1 must be TRUE



Consider the following formula:

$$F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee \neg x_1)$$

▶ If x_1 is TRUE then x_4 must be TRUE

$$F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee \neg x_1)$$

- ▶ If x_1 is TRUE then x_4 must be TRUE
- ▶ If x_4 is TRUE, then x_3 must be FALSE

$$F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee \neg x_1)$$

- ▶ If x_1 is TRUE then x_4 must be TRUE
- ▶ If x_4 is TRUE, then x_3 must be FALSE
- ▶ If x_3 is FALSE then x_2 must be TRUE

$$F = (x_1 \vee \neg x_2) \wedge (x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_4) \wedge (x_4 \vee \neg x_1)$$

- ▶ If x_1 is TRUE then x_4 must be TRUE
- ▶ If x_4 is TRUE, then x_3 must be FALSE
- ▶ If x_3 is FALSE then x_2 must be TRUE
- ► If x_2 is TRUE then x_1 must be TRUE which it is!

▶ Suppose we have a clause $C = (x_i \lor x_j)$

- ▶ Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_i must be TRUE

- ▶ Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_i must be TRUE
 - $ightharpoonup \neg x_i \implies x_j$

- ▶ Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_i must be TRUE
 - $ightharpoonup \neg x_i \implies x_j$
- ▶ If x_i is FALSE then x_i must be true

- ▶ Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_j must be TRUE
 - $ightharpoonup \neg x_i \implies x_j$
- ▶ If x_i is FALSE then x_i must be true
 - $ightharpoonup \neg x_j \implies x_i$

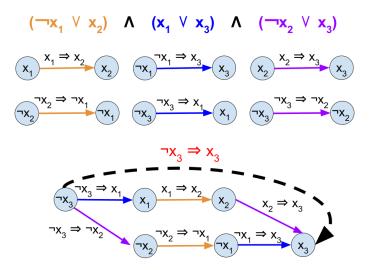
- ▶ Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_j must be TRUE
 - $ightharpoonup \neg x_i \implies x_j$
- ▶ If x_j is FALSE then x_i must be true
- ▶ If $x_i \implies x_j$ and $x_j \implies x_k$ then $x_i \implies x_k$ (transitive property)

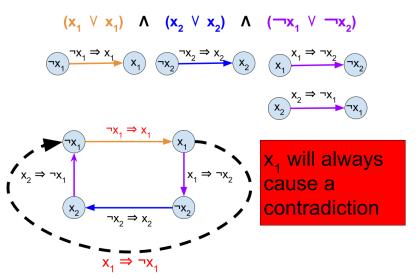
- ▶ Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_j must be TRUE
 - $ightharpoonup \neg x_i \implies x_j$
- ▶ If x_j is FALSE then x_i must be true
- ▶ If $x_i \implies x_j$ and $x_j \implies x_k$ then $x_i \implies x_k$ (transitive property)
- We can use an implication graph to represent these relationships

- ▶ Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_j must be TRUE
 - $ightharpoonup \neg x_i \implies x_j$
- ▶ If x_i is FALSE then x_i must be true
- ▶ If $x_i \implies x_j$ and $x_j \implies x_k$ then $x_i \implies x_k$ (transitive property)
- We can use an implication graph to represent these relationships
 - Every node is variable

- ▶ Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_i must be TRUE
 - $ightharpoonup \neg x_i \implies x_j$
- ▶ If x_i is FALSE then x_i must be true
- If $x_i \Longrightarrow x_j$ and $x_j \Longrightarrow x_k$ then $x_i \Longrightarrow x_k$ (transitive property)
- We can use an implication graph to represent these relationships
 - Every node is variable
 - Every edge is an implication

- ▶ Suppose we have a clause $C = (x_i \lor x_j)$
- ▶ If x_i is FALSE then x_i must be TRUE
 - $ightharpoonup \neg x_i \implies x_j$
- ▶ If x_i is FALSE then x_i must be true
- ▶ If $x_i \implies x_j$ and $x_j \implies x_k$ then $x_i \implies x_k$ (transitive property)
- We can use an implication graph to represent these relationships
 - Every node is variable
 - Every edge is an implication
 - Every path is a (transitive) implication





Input: a formula F with n variables and m clauses

1. Create the implication graph for F

- 1. Create the implication graph for F
- 2. For every variable x_i do the following

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F

- 1. Create the implication graph for *F*
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F
- ightharpoonup O(n) vertices + O(m) edges

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F
- \triangleright O(n) vertices + O(m) edges
- ightharpoonup O(n) loop iterations

- 1. Create the implication graph for F
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F
- \triangleright O(n) vertices + O(m) edges
- \triangleright O(n) loop iterations
- ightharpoonup PATH \in P, each loop iteration is poly-time

- 1. Create the implication graph for *F*
- 2. For every variable x_i do the following
 - 2.1 Check if there is a path from x_i to $\neg x_i$
 - 2.2 Check if there is a path from $\neg x_i$ to x_i
 - 2.3 If both paths exist, there is a contradiction. Immediately reject F
- 3. If there are no contradictions, accept F
- \triangleright O(n) vertices + O(m) edges
- \triangleright O(n) loop iterations
- $ightharpoonup PATH \in P$, each loop iteration is poly-time
- ▶ $O(n) + O(m) + O(n) \cdot \text{poly-time} \in P$

▶ **Def:** The class EXP is the set of all languages that can be be decided in exponential time

- ▶ **Def:** The class EXP is the set of all languages that can be be decided in exponential time
 - \triangleright $O(2^{n^c})$ for some constant c

- ▶ **Def:** The class EXP is the set of all languages that can be be decided in exponential time
 - \triangleright $O(2^{n^c})$ for some constant c
- Alternate definition:

$$EXP = \bigcup_{c} TIME(T(2^{n^c}))$$

- ▶ **Def:** The class EXP is the set of all languages that can be be decided in exponential time
 - \triangleright $O(2^{n^c})$ for some constant c
- Alternate definition:

$$EXP = \bigcup_{c} TIME(T(2^{n^{c}}))$$

► EXP languages are considered "intractable"

▶ Note: $P \subseteq EXP$

- ▶ Note: $P \subseteq EXP$
- ▶ Does P = EXP?

- ▶ Note: $P \subseteq EXP$
- \triangleright Does P = EXP?
 - ► Can every exponential-time algorithm be converted to a polynomial-time algorithm?

► Time Hierarchy Theorem: $TIME(T(n)) \subseteq TIME(T(2n)^3)$

► Time Hierarchy Theorem:

 $TIME(T(n)) \subsetneq TIME(T(2n)^3)$

Proof idea: Use diagonalization to create a machine that contradicts all the TIME(T(n)) machines

► Time Hierarchy Theorem:

 $TIME(T(n)) \subsetneq TIME(T(2n)^3)$

- **Proof idea:** Use diagonalization to create a machine that contradicts all the TIME(T(n)) machines
- The construction creates a machine that runs in time $O(T(2n)^3)$

► Time Hierarchy Theorem:

 $TIME(T(n)) \subsetneq TIME(T(2n)^3)$

- **Proof idea:** Use diagonalization to create a machine that contradicts all the TIME(T(n)) machines
- The construction creates a machine that runs in time $O(T(2n)^3)$
- ► Glass half full: More time will *always* allow us to solve more more problems

► Time Hierarchy Theorem:

 $TIME(T(n)) \subsetneq TIME(T(2n)^3)$

- **Proof idea:** Use diagonalization to create a machine that contradicts all the TIME(T(n)) machines
- The construction creates a machine that runs in time $O(T(2n)^3)$
- ► Glass half full: More time will always allow us to solve more more problems
- ▶ Glass half empty: Certain problems can't be solved within a certain amount of time

► Time Hierarchy Theorem:

$$TIME(T(n)) \subsetneq TIME(T(2n)^3)$$

- **Proof idea:** Use diagonalization to create a machine that contradicts all the TIME(T(n)) machines
- The construction creates a machine that runs in time $O(T(2n)^3)$
- ▶ Glass half full: More time will always allow us to solve more more problems
- ► **Glass half empty**: Certain problems *can't* be solved within a certain amount of time

$$P \subseteq TIME(2^n) \subsetneq TIME((2^{2n})^3) \subseteq EXP$$