Theory of Computation
Complexity classes, P, EXP

1/39

Complexity classes

2 /39

Complexity classes

» In other CS classes, we might ask what
problems can we solve in a particular runtime

(e.g. O(n), O(n?), etc.)

2 /39

Complexity classes

» In other CS classes, we might ask what
problems can we solve in a particular runtime
(e.g. O(n), O(n?), etc.)

» |n this class, we are more interested in coarser
classifications

2 /39

Complexity classes

» In other CS classes, we might ask what
problems can we solve in a particular runtime
(e.g. O(n), O(n?), etc.)

» |n this class, we are more interested in coarser
classifications

» what problems require the same “level /tier” of
resources

2 /39

Complexity classes

» In other CS classes, we might ask what
problems can we solve in a particular runtime
(e.g. O(n), O(n?), etc.)

» |n this class, we are more interested in coarser
classifications

» what problems require the same “level /tier” of
resources
» Which problems can be solved “efficiently” ?

2 /39

Complexity classes

» In other CS classes, we might ask what
problems can we solve in a particular runtime
(e.g. O(n), O(n?), etc.)

» |n this class, we are more interested in coarser
classifications

» what problems require the same “level /tier” of

resources
» Which problems can be solved “efficiently” ?
» What problems can’t be solved efficiently?

2 /39

Complexity classes
» Recall: a language is a set of strings

3/39

Complexity classes

» Recall: a language is a set of strings
» Def: a complexity class is a set of languages

3/39

Complexity classes

» Recall: a language is a set of strings

» Def: a complexity class is a set of languages
» We have already seen some complexity classes:

3/39

Complexity classes

» Recall: a language is a set of strings

» Def: a complexity class is a set of languages
» We have already seen some complexity classes:
» REG: the regular languages

3/39

Complexity classes

» Recall: a language is a set of strings

» Def: a complexity class is a set of languages
» We have already seen some complexity classes:
» REG: the regular languages
» D: the decidable languages

3/39

Complexity classes

» Recall: a language is a set of strings

» Def: a complexity class is a set of languages
» We have already seen some complexity classes:
» REG: the regular languages
» D: the decidable languages

» RE: the recursively enumerable languages

3/39

Complexity classes

» Recall: a language is a set of strings

» Def: a complexity class is a set of languages
» We have already seen some complexity classes:
» REG: the regular languages
» D: the decidable languages
» RE: the recursively enumerable languages

» Some of these classes are bigger than others!

3/39

Complexity classes

» Recall: a language is a set of strings

» Def: a complexity class is a set of languages
» We have already seen some complexity classes:
» REG: the regular languages
» D: the decidable languages
» RE: the recursively enumerable languages

» Some of these classes are bigger than others!

Regular Decidable

Languages Languages All Languages

3/39

TIME-based complexity classes

4/39

TIME-based complexity classes

» Let T : N — N be a runtime function

4/39

TIME-based complexity classes

» Let T : N — N be a runtime function

» Def: The class TIME(T (n)) is the set of all
languages that can be decided by a machine

that runs in O(T(n)) time

4/39

TIME-based complexity classes

» Let T : N — N be a runtime function

» Def: The class TIME(T (n)) is the set of all
languages that can be decided by a machine
that runs in O(T(n)) time

» The language L = {0%1%|k > 0} € TIME(n?)

4/39

TIME-based complexity classes

» Let T : N — N be a runtime function

» Def: The class TIME(T (n)) is the set of all
languages that can be decided by a machine
that runs in O(T(n)) time

» The language L = {0%1%|k > 0} € TIME(n?)
» In fact, L € TIME(nlog(n)) - see Sipser

4/39

The class P

5 /39

The class P

» We want a working definition what it means for
a problem to be solved “efficiently”

5 /39

The class P

» We want a working definition what it means for
a problem to be solved “efficiently”

» Def: The class P is the set of all languages
that can be decided in polynomial time

5 /39

The class P

» We want a working definition what it means for
a problem to be solved “efficiently”

» Def: The class P is the set of all languages
that can be decided in polynomial time

» O(n°) for some constant ¢

5 /39

The class P

» We want a working definition what it means for
a problem to be solved “efficiently”

» Def: The class P is the set of all languages
that can be decided in polynomial time

» O(n°) for some constant ¢
» Alternate definition:

P = | JTIME(T(n°))

5 /39

The class P

» We want a working definition what it means for
a problem to be solved “efficiently”

» Def: The class P is the set of all languages
that can be decided in polynomial time

» O(n°) for some constant ¢
» Alternate definition:

P = | JTIME(T(n°))

» In this course, we will use P as a proxy for
“tractable” problems

5 /39

Length of numeric inputs

6 /39

Length of numeric inputs

» The numeric value of a number isn't the same
as the length of its encoding!

6 /39

Length of numeric inputs

» The numeric value of a number isn't the same
as the length of its encoding!

» Let's consider the number n = 16

6 /39

Length of numeric inputs
» The numeric value of a number isn't the same
as the length of its encoding!
» Let's consider the number n = 16

» Unary encoding: (16) = 1111111111111111
[(m)|€0(n)

6 /39

Length of numeric inputs
» The numeric value of a number isn't the same
as the length of its encoding!
» Let's consider the number n = 16
» Unary encoding: (16) = 1111111111111111

[(m)|€0(n)
» Binary encoding: (16) = 10000

[{n >\€O(|0g(
neO(2/{m!

n))
)

6 /39

Length of numeric inputs

>

>
>

The numeric value of a number isn't the same
as the length of its encoding!

Let's consider the number n = 16

Unary encoding: (16) = 1111111111111111
[{n)|€O(n)
Binary encoding: (16) = 10000

[(n)|€O(log(n))
neo (2
An 8-byte unary integer cannot represent
numbers bigger than 32!

6 /39

Length of numeric inputs

>

>
>

The numeric value of a number isn't the same
as the length of its encoding!

Let's consider the number n = 16

Unary encoding: (16) = 1111111111111111
[{n)|€O(n)
Binary encoding: (16) = 10000

[{m}|€O(log(n))
neo(21ml)

An 8-byte unary integer cannot represent
numbers bigger than 32!

If the input is in binary (or base 10 or base 16),
we have to be careful about runtime analysis

6 /39

Runtime with numeric inputs

What is the running time of this algorithm?

1. Receive a number (N) as input in binary
2. For i=2...(N —1):

2.1 If N % i == 0, immediately reject
3. If we finish the loop, accept

7/39

Runtime with numeric inputs

What is the running time of this algorithm?

1. Receive a number (N) as input in binary
2. For i=2...(N—1):

2.1 If N % i == 0, immediately reject
3. If we finish the loop, accept

» O(N) loop iterations

7/39

Runtime with numeric inputs

What is the running time of this algorithm?
1. Receive a number (N) as input in binary
2. For i=2...(N —1):

2.1 If N % i == 0, immediately reject
3. If we finish the loop, accept
» O(N) loop iterations
> (V)] = O(log(N))

7/39

Runtime with numeric inputs

What is the running time of this algorithm?
1. Receive a number (N) as input in binary
2. For i=2...(N —1):

2.1 If N % i == 0, immediately reject
3. If we finish the loop, accept
» O(N) loop iterations
> (V)] = O(log(N))
> N = 2l

7/39

Runtime with numeric inputs

What is the running time of this algorithm?
1. Receive a number (N) as input in binary
2. For i=2...(N —1):

2.1 If N % i == 0, immediately reject
3. If we finish the loop, accept
» O(N) loop iterations
> [(N)| = O(log(N))
> N = 2l(N)]
» O(2/!N)1) loop iterations!!!

7/39

Runtime with numeric inputs

What is the running time of this algorithm?
1. Receive a number (N) as input in binary
2. For i=2...(N —1):
2.1 If N % i == 0, immediately reject
3. If we finish the loop, accept
» O(N) loop iterations
> (V)] = O(log(N))
> N = 2N
» O(2/!N)1) loop iterations!!!
» This is exponential in the length of the input!!!

7/39

Runtime with numeric inputs

numeric value

1000

800

600

400

200

= unary
= binary

8 /39

The language COPRIMES

9/39

The language COPRIMES

COPRIMES = {(x,y)| gcd(x,y) = 1}

» We receive two binary numbers as input

9/39

The language COPRIMES

COPRIMES = {(x,y)| gcd(x,y) = 1}

» We receive two binary numbers as input

» We want to check if they have any common
factors (besides 1)

9/39

The language COPRIMES

COPRIMES = {(x,y)| gcd(x,y) = 1}

» We receive two binary numbers as input

» We want to check if they have any common
factors (besides 1)

» Naive approach: for i =1,... min(x,y),
check if / is a common factor, and output the
maximum common factor found

9/39

The language COPRIMES

COPRIMES = {(x,y)| gcd(x,y) = 1}

» We receive two binary numbers as input

» We want to check if they have any common
factors (besides 1)

» Naive approach: for i =1,... min(x,y),
check if / is a common factor, and output the
maximum common factor found

» This is O(n) in the value of x and y...

9/39

The language COPRIMES

COPRIMES = {(x,y)| gcd(x,y) = 1}

» We receive two binary numbers as input

» We want to check if they have any common
factors (besides 1)

» Naive approach: for i =1,... min(x,y),
check if / is a common factor, and output the
maximum common factor found

» This is O(n) in the value of x and y...
» ...which is O(2") in the length of (x,y)

9/39

COPRIMES € P

10 /39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm

10/ 39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm

1. If x <y, swap x and y

10/ 39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm

1. If x <y, swap x and y
2. Repeat until y = 0:

10/ 39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm
1. If x <y, swap x and y

2. Repeat until y = 0:
21 x+x%y

10/ 39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm

1. If x <y, swap x and y

2. Repeat until y = 0:

21 x+x%y
2.2 Swap x and y

10/ 39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm
1. If x <y, swap x and y

2. Repeat until y = 0:

21 x+x%y
2.2 Swap x and y

3. If x =1, accept (x, y); otherwise reject

10/ 39

COPRIMES € P
718 = 66 = 1 remainder 12 (78 =66 x 1 +12)

/

66 = 12 = 5 remainder 6 (66 = 12 X 5 + 6)

S

12 - 6 = 2 remainder 0 (12 =6 x 2+ 0)

/

6 = Greatest Common Factor

11/39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm

1. f x <y, swap x and y
2. Repeat until y = 0:

21 x+x%y
2.2 Swap x and y

3. If x =1, accept (x, y); otherwise reject
Claim: This step cuts x in half

12 /39

COPRIMES € P
We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm
1. If x <y, swap x and y

2. Repeat until y = 0:
21 x+x%y
2.2 Swap x and y

3. If x =1, accept (x, y); otherwise reject
Claim: This step cuts x in half
» Case 1: yg)2—<. Then x %y <y <

N X

12 /39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm

1. f x <y, swap x and y
2. Repeat until y = 0:

21 x<x%y
2.2 Swap x and y

3. If x =1, accept (x, y); otherwise reject
Claim: This step cuts x in half

> Casel:y§)2—<. Thenx%y<y§)2—<

> Case2:y>g. Thenx%y:X_y<g

12 /39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm

1. If x <y, swap x and y
2. Repeat until y = 0:

21 x+x%y
2.2 Swap x and y

3. If x =1, accept (x, y); otherwise reject
Claim: There are O(n = |(x, y)|) loop iterations

13 /39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm

1. If x <y, swap x and y
2. Repeat until y = 0:

21 x+x%y
2.2 Swap x and y

3. If x =1, accept (x, y); otherwise reject
Claim: There are O(n = |(x, y)|) loop iterations

» After two iterations, both x and y have been
cut in half

13 /39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm

1. If x <y, swap x and y
2. Repeat until y = 0:

21 x+x%y
2.2 Swap x and y

3. If x =1, accept (x, y); otherwise reject
Claim: There are O(n = |(x, y)|) loop iterations

» After two iterations, both x and y have been
cut in half

» The number of times we can cut the input in
half is log(max{x,y}) = O(|(x, y))

13 /39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm
1. If x <y, swap x and y

2. Repeat until y = 0:

21 x<x%y
2.2 Swap x and y

3. If x =1, accept (x, y); otherwise reject

» Modular reduction (and other arithmetic) can
be calculated in polynomial time

14 /39

COPRIMES € P

We will use the Euclidean Algorithm — possibly
the oldest recorded algorithm
1. If x <y, swap x and y

2. Repeat until y = 0:

21 x<x%y
2.2 Swap x and y

3. If x =1, accept (x, y); otherwise reject

» Modular reduction (and other arithmetic) can
be calculated in polynomial time

» O(n) loop iterations x O(n°) steps per loop
iteration = O(n) € P

14 /39

The language UNARY-SUBSET-SUM

UNARY-SUBSET-SUM =

B is unary
<B|X1, X2, . . -Xn> |there is a combination of x; (no repeats)
that add up to B

15 /39

The language UNARY-SUBSET-SUM

UNARY-SUBSET-SUM =

B is unary
<B|X1, X2, . . -Xn> |there is a combination of x; (no repeats)
that add up to B

Example: (31|7,4,9,5,20)
Solution: 7+ 4+ 20 =31V

15 /39

The language UNARY-SUBSET-SUM

UNARY-SUBSET-SUM =

B is unary
<B|X1, X2, . . -Xn> |there is a combination of x; (no repeats)
that add up to B

Example: (31|7,4,9,5,20)
Solution: 7+ 4 +20 =31V

Example: (101|6, 8, 10)
Solution: It is impossible; 6 + 8 + 10 = 24 < 101

15 /39

The language UNARY-SUBSET-SUM

Which of the following sets are part of
UNARY-SUBSET-SUM?

A. (0[1,2,3,4,5)

(13]3,3,3)

(40[13, 26, 15, 24)

B.
C.
D. (45]2,3,10,17, 30)

16 / 39

The language UNARY-SUBSET-SUM

Which of the following sets are part of
UNARY-SUBSET-SUM?

A. (0]1,2,3,4,5) v

(13]3,3,3)

(40[13, 26, 15, 24)

B.
C.
D. (45[2,3,10,17,30) v

16 / 39

UNARY-SUBSET-SUM € P

17 /39

UNARY-SUBSET-SUM € P

Technique: dynamic programming

17 /39

UNARY-SUBSET-SUM € P

Technique: dynamic programming
1. A« (n+1) x (B+ 1) matrix.

17 /39

UNARY-SUBSET-SUM € P
Technique: dynamic programming
1. A« (n+1) x (B+ 1) matrix.
2. Initialize A[i,0] to TRUE for all /; Initialize all
other elements to FALSE

17 /39

UNARY-SUBSET-SUM € P

Technique: dynamic programming
1. A« (n+1) x (B+ 1) matrix.
2. Initialize A[i,0] to TRUE for all /; Initialize all

other elements to FALSE
3. Fori=1...n:

17 /39

UNARY-SUBSET-SUM € P

Technique: dynamic programming
1. A« (n+1) x (B+ 1) matrix.
2. Initialize A[i,0] to TRUE for all /; Initialize all

other elements to FALSE

3. Fori=1...n:
31 Forj=1...B:

17 /39

UNARY-SUBSET-SUM € P

Technique: dynamic programming
1. A« (n+1) x (B+ 1) matrix.
2. Initialize A[i,0] to TRUE for all /; Initialize all

other elements to FALSE

3. Fori=1...n:
31 Forj=1...B:
3.1.1 If Ali — 1,j] = TRUE, or if j > x; and
Ali —1,j — x{] = TRUE, set A[i] to TRUE

17 /39

UNARY-SUBSET-SUM € P
Technique: dynamic programming
1. A« (n+1) x (B+ 1) matrix.
2. Initialize A[i,0] to TRUE for all /; Initialize all

other elements to FALSE

3. Fori=1...n:
31 Forj=1...B:
3.1.1 If Ali — 1,j] = TRUE, or if j > x; and
Ali —1,j — x{] = TRUE, set A[i] to TRUE

4. If A[n, B] = TRUE, accept (B, x1,...,Xp).
Otherwise, reject

17 /39

UNARY-SUBSET-SUM € P

Technique: dynamic programming
1. A« (n+1) x (B+ 1) matrix.
2. Initialize A[i,0] to TRUE for all /; Initialize all

other elements to FALSE

3. Fori=1...n:
31 Forj=1...B:
3.1.1 If Ali — 1,j] = TRUE, or if j > x; and
Ali —1,j — x{] = TRUE, set A[i] to TRUE

4. If A[n, B] = TRUE, accept (B, x1,...,Xp).
Otherwise, reject
» O(n) outer loop iterations

17 /39

UNARY-SUBSET-SUM € P
Technique: dynamic programming
1. A« (n+1) x (B+ 1) matrix.
2. Initialize A[i,0] to TRUE for all /; Initialize all

other elements to FALSE

3. Fori=1...n:
31 Forj=1...B:
3.1.1 If Ali — 1,j] = TRUE, or if j > x; and
Ali —1,j — x{] = TRUE, set A[i] to TRUE

4. If A[n, B] = TRUE, accept (B, x1,...,Xp).
Otherwise, reject

» O(n) outer loop iterations

» O(B) inner loop iterations = O(|(B)]|) since
the input is unary

17 /39

UNARY-SUBSET-SUM € P
Technique: dynamic programming
1. A« (n+1) x (B+ 1) matrix.
2. Initialize A[i,0] to TRUE for all /; Initialize all

other elements to FALSE

3. Fori=1...n:
31 Forj=1...B:
3.1.1 If Ali — 1,j] = TRUE, or if j > x; and
Ali —1,j — x{] = TRUE, set A[i] to TRUE

4. If A[n, B] = TRUE, accept (B, x1,...,Xp).
Otherwise, reject
» O(n) outer loop iterations
» O(B) inner loop iterations = O(|(B)]|) since
the input is unary
» O(B-n)eP
17 /39

The language PATH

18 /39

The language PATH

PATH = {(G,s, t)|G is a digraph with an s-t path}

18 /39

The language PATH

PATH = {(G,s, t)|G is a digraph with an s-t path}

18 /39

PATH € P

19 /39

PATH € P

Technique: Perform a breadth-first search

19 /39

PATH € P

Technique: Perform a breadth-first search
1. Mark node s

19 /39

PATH € P

Technique: Perform a breadth-first search

1. Mark node s

2. Repeat the following until now additional nodes
are marked

19 /39

PATH € P

Technique: Perform a breadth-first search

1. Mark node s

2. Repeat the following until now additional nodes
are marked

2.1 Scan all edges. If there is an edge (u, v) where u is
marked and v is unmarked, mark v

19 /39

PATH € P

Technique: Perform a breadth-first search

1. Mark node s

2. Repeat the following until now additional nodes
are marked

2.1 Scan all edges. If there is an edge (u, v) where u is
marked and v is unmarked, mark v

3. If t is marked, accept (G, s, t). Otherwise,
reject.

19 /39

PATH € P

Technique: Perform a breadth-first search

1. Mark node s

2. Repeat the following until now additional nodes
are marked

2.1 Scan all edges. If there is an edge (u, v) where u is
marked and v is unmarked, mark v

3. If t is marked, accept (G, s, t). Otherwise,
reject.

» O(|V]) rounds

19 /39

PATH € P

Technique: Perform a breadth-first search

1. Mark node s

2. Repeat the following until now additional nodes
are marked

2.1 Scan all edges. If there is an edge (u, v) where u is
marked and v is unmarked, mark v

3. If t is marked, accept (G, s, t). Otherwise,
reject.

» O(|V]) rounds
» O(|E|) edge lookups per round

19 /39

PATH € P

Technique: Perform a breadth-first search

1. Mark node s

2. Repeat the following until now additional nodes
are marked

2.1 Scan all edges. If there is an edge (u, v) where u is
marked and v is unmarked, mark v

3. If t is marked, accept (G, s, t). Otherwise,
reject.

» O(|V]) rounds
» O(|E|) edge lookups per round
> O(|V|-|E])eP

19 /39

PATH € P

1. Mark vertex S 2. Mark all neighbors of S (and

‘ their neighbors, and so on)

3. Continue until T gets marked... 4. ...or until we can’t mark further

™

20 /39

Logical symbols

21/39

Logical sym bols

Ei} D —D*

Inpuis Output Inputs Output Input Output
A B C A B C A C
0 0 i 0 0 0 0 1
0 1 0 0 1 1 1 0
1] (1 1 0 1
1 1 1 1 1 1

21/39

Logical sym bols

Ei} D —D*

Inpuis Output Inputs Output Input Output
A B C A B C A C
0 0 i 0 0 0 0 1
0 1 0 0 1 1 1 0
1] (1 1 0 1
1 1 1 1 1 1

» AND (A): all inputs must be TRUE

21/39

Logical symbols

AND ar NOT
A — A
c C A C
-) e >
Inputs Output Inputs Output Input Output
A B C A B C A C
0 [1] 0 0 0 0 0 1
0 [0 0 I 1 I 0
1] (1 1 0 1
1 1 1 1 1 1

» AND (A): all inputs must be TRUE
» OR (V): at least one input must be TRUE

21/39

Logical symbols

AND ar NOT
D D D
C C A C
B — B
Inputs Output Inputs Output Input Output

A B C A B C A C

0 [1] 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1] (1 1 0 1

1 1 1 1 1 1

» AND (A): all inputs must be TRUE
» OR (V): at least one input must be TRUE
» NOT (—): input must be FALSE

21/39

Logical symbol practice

Suppose x = TRUE, y = TRUE, z = FALSE.
Which of the following expressions are TRUE?

A) x E) (xVy)A(yVz)
B) z F) ~xV (-yV-2z)
C)yVvz G) (xAy)A(yAz)
D) —(xAy) H) (xVy)A(zVzV2z)

22 /39

Logical symbol practice

Suppose x = TRUE, y = TRUE, z = FALSE.
Which of the following expressions are TRUE?

A) x v E) xVy)A(yVz)V
B) z F) —x V (y V —~2)v
C)yvzv G) (x A y)A(y Az)
D) —(x A y) H) (xVy)A(zVzV 2)

22 /39

Conjunctive Normal Form

23 /39

Conjunctive Normal Form

Def: A Conjunctive Normal Form (CNF)
formula is an expression of the following form:

23 /39

Conjunctive Normal Form

Def: A Conjunctive Normal Form (CNF)
formula is an expression of the following form:
1. Disjunction of several clauses

F=GANGN...C,

23 /39

Conjunctive Normal Form

Def: A Conjunctive Normal Form (CNF)
formula is an expression of the following form:
1. Disjunction of several clauses

F=GANGN...C,
2. Each clause is conjunction of several variables

C = (X,'1 VX, V.. 'an)

23 /39

Conjunctive Normal Form

Def: A Conjunctive Normal Form (CNF)
formula is an expression of the following form:
1. Disjunction of several clauses

F=GANGN...C,
2. Each clause is conjunction of several variables
C = (X,'1 VX, V.. 'an)

3. Each variable can be either positive x; or
negative —x;

23 /39

Conjunctive Normal Form

Def: A Conjunctive Normal Form (CNF)
formula is an expression of the following form:
1. Disjunction of several clauses

F=GANGN...C,
2. Each clause is conjunction of several variables
C = (X,'1 VX, V.. 'an)

3. Each variable can be either positive x; or
negative —x;
Examples:

23 /39

Conjunctive Normal Form

Def: A Conjunctive Normal Form (CNF)
formula is an expression of the following form:
1. Disjunction of several clauses

F=GANGN...C,
2. Each clause is conjunction of several variables
C = (X,'1 VX, V.. 'an)

3. Each variable can be either positive x; or
negative —x;
Examples:
> (X1 VxaVx3)A(xsV x5)

23 /39

Conjunctive Normal Form

Def: A Conjunctive Normal Form (CNF)
formula is an expression of the following form:
1. Disjunction of several clauses

F=GANGN...C,
2. Each clause is conjunction of several variables
C = (X,'1 VX, V.. 'an)

3. Each variable can be either positive x; or
negative —x;
Examples:
> (X1 VxaVx3)A(xsV x5)
> qaVox) AoV xsVxVxsVox) A (—x)

23 /39

Conjunctive Normal Form

Which of the following expressions are in
conjunctive normal form?

A) (x)

B) ()

C) (_|X1 V _|X1)

D) —|(X1 V Xl)

E) (Xl A\ Xo N\ X3) V (X4 N X5)

F) caVxVxs)A(xVxsVx)
G) (X1 V Xxo V X3) V (_lX1 V —|X2)
H) (Xl A Xo N\ X3) AN (_|X1 N _\X2)

24 /39

Conjunctive Normal Form

Which of the following expressions are in
conjunctive normal form?

A) (x))

B) () v

C) (_|X1 V —|X1) v

D) —|(X1 V Xl)

E) (Xl A\ Xo N\ X3) V (X4 N X5)

F) (X1 \/XQ\/X3)/\(X4\/X5\/X6) v
G) (X1 V Xxo V X3) V (_lX1 V —|X2)

H) (Xl A Xo N\ X3) AN (_|X1 N _\X2)

24 /39

CNF Satisfying Assignment

25 /39

CNF Satisfying Assignment

» Def: A truth assignment sets every variable
to either TRUE or FALSE

25 /39

CNF Satisfying Assignment

» Def: A truth assignment sets every variable
to either TRUE or FALSE

» Note: If x; is FALSE then —x; is TRUE

25 /39

CNF Satisfying Assignment

» Def: A truth assignment sets every variable
to either TRUE or FALSE
» Note: If x; is FALSE then —x; is TRUE

» A CNF clause is satisfied if at least one of its
variables is TRUE

25 /39

CNF Satisfying Assignment

» Def: A truth assignment sets every variable
to either TRUE or FALSE
» Note: If x; is FALSE then —x; is TRUE

» A CNF clause is satisfied if at least one of its
variables is TRUE

» A CNF formula is satisfied if all of its clauses
are satisfied

25 /39

CNF Satisfying Assignment

» Def: A truth assignment sets every variable
to either TRUE or FALSE

» Note: If x; is FALSE then —x; is TRUE

» A CNF clause is satisfied if at least one of its
variables is TRUE

» A CNF formula is satisfied if all of its clauses
are satisfied

» A CNF formula is satisfiable if there exists a
satisfying assignment

25 /39

CNF Satisfying Assignment
F = (X1\/X2\/X3)/\(_|X1\/X3\/X4)/\(XQ)/\(_|X5\/ﬁX1)

x1 = xa = x5 = TRUE
Xp = X3 = FALSE

Which clauses are satisfied?

(X1 V X2 V X3)
(—x1 VX3V x)

(%)

D) (_\X5 V _le)

A)
B)
C)

26 /39

CNF Satisfying Assignment
F = (X1\/X2\/X3)/\(_|X1\/X3\/X4)/\(XQ)/\(_|X5\/ﬁX1)

x1 = xa = x5 = TRUE
Xp = X3 = FALSE

Which clauses are satisfied?
x1VxpV X3) v

A) (
B) (—|X1 V X3 \/X4) v
C) (x)

D) (_\X5 V _le)

26 /39

CNF Satisfiability

x1 =Xx3 = x5 = TRUE
Xo = X3 = FALSE

Which of the following formulas are satisfied?
A) F=(xVxoV-x3)A(xsV x5)

B) F=(x1V—-xVx3V-xg)A(x)

C) F=(x1) A(x2) A (x3) A (xa) A (x5)

D) F=(—xV-xVx)A(xVx3)

27 /39

CNF Satisfiability

x1 =Xx3 = x5 = TRUE
Xo = X3 = FALSE

Which of the following formulas are satisfied?
A) F=0aVxV-x3)A(xaVxs5) vV

B) F=(x1V—xVx3V-ox)A(x) v

C) F=(x1) A(x2) A (x3) A (xa) A (x5)

D) F=(—xV-xVx)A(xVx3)

27 /39

CNF Satisfying Assignment

Which of the following formulas are satisfiable?
A) F=(VxoVx3)A(xsV x5V Xp)

B) F=(x1VxVx3)A(—x1V-xV-oxs)

C) F=(x1) A (—x)

D) F = (xa) A (—x)

28 /39

CNF Satisfying Assignment

Which of the following formulas are satisfiable?
A) F=0aVxoVx3)A(xVxsVxs) vV

B) F=(x1VxxVx3) A(—x1V—xV-ox3) v
C) F=(x)A(—x) VvV

D) F = (xa) A (—x)

28 /39

CNF Satisiability

Is the following formula satisfiable?

(X1 V X3)/\(_|X1 V _|X3)/\(X1\/X2)/\(_|X1 V X3)/\(X1 V _|X3)

29 /39

CNF Satisiability

Is the following formula satisfiable?
(X1 V X3)/\(_|X1 V _|X3)/\(X1\/X2)/\(_|X1 V X3)/\(X1 V _|X3)

These four clauses can't all be satisfied!

29 /39

The language 2-SAT

30 /39

The language 2-SAT

Def: A 2-CNF Formula is a CNF formula with at
most 2 variables in each clause

30 /39

The language 2-SAT

Def: A 2-CNF Formula is a CNF formula with at
most 2 variables in each clause

2-SAT = {F|F is a satisfiable 2-CNF formula}

30 /39

The language 2-SAT

Def: A 2-CNF Formula is a CNF formula with at
most 2 variables in each clause

2-SAT = {F|F is a satisfiable 2-CNF formula}

Which of these formulas are in the language 2-SAT?

A) (X1 V X2) VAN (X3 vV X4)
B) (X1 V X1) A (‘le V —|X1)
C) (x1) A (x2) A (x3)

D) (x1 Vx V x3)

30 /39

The language 2-SAT

Def: A 2-CNF Formula is a CNF formula with at
most 2 variables in each clause

2-SAT = {F|F is a satisfiable 2-CNF formula}

Which of these formulas are in the language 2-SAT?

A) (X1 V Xg) A (X3 V X4) v
B) (X1 V X1) N (‘le V —|X1)
C) (Xl) N\ (X2) AN (X3) v
D) (x1 Vx V x3)

30 /39

Satisfying a 2-CNF Formula

Consider the following formula:

F = (Xl V _|X2) VAN (X2 V X3) VAN (_|X3 V ﬁX4) N (X4 V Xl)

31/39

Satisfying a 2-CNF Formula

Consider the following formula:

F = (X1 V _|X2) VAN (X2 V X3) VAN (_|X3 V ﬁX4) N (X4 V Xl)

» If x; is FALSE then x, must be FALSE

31/39

Satisfying a 2-CNF Formula

Consider the following formula:

F = (Xl V _|X2) VAN (X2 V X3) VAN (_|X3 V ﬁX4) N (X4 V Xl)

» If x; is FALSE then x, must be FALSE
» If x, is FALSE, then x3 must be TRUE

31/39

Satisfying a 2-CNF Formula

Consider the following formula:

F = (X1 V _|X2) VAN (X2 V X3) VAN (_|X3 V _|X4) N (X4 V Xl)

» If x; is FALSE then x, must be FALSE
» If x, is FALSE, then x3 must be TRUE
» If x3 is TRUE then x; must be FALSE

31/39

Satisfying a 2-CNF Formula

Consider the following formula:

F=(x1V-x)AVx3)A(-x3V-xg)A (g Vx)

» If x; is FALSE then x, must be FALSE
» If x, is FALSE, then x3 must be TRUE
» If x3 is TRUE then x; must be FALSE
» If x4 is FALSE then x; must be TRUE

31/39

Satisfying a 2-CNF Formula

Consider the following formula:

F=(x1V-x)A(Vx3)A(—x3V-x)A(xg V—xp)

» If x; is TRUE then x4 must be TRUE

32 /39

Satisfying a 2-CNF Formula

Consider the following formula:

F=(x1V-x)A(Vx3)A(—x3V-x)A(xg V—xp)

» If x; is TRUE then x4 must be TRUE
» If x4 is TRUE, then x3 must be FALSE

32/39

Satisfying a 2-CNF Formula

Consider the following formula:

F=(x1V-x)A(Vx3)A(—x3V-x)A(xg V —xp)

» If x; is TRUE then x4 must be TRUE
» If x4 is TRUE, then x3 must be FALSE
» If x3 is FALSE then x, must be TRUE

32/39

Satisfying a 2-CNF Formula

Consider the following formula:

F=(x1V-x)A(Vx3)A(—x3V-x)A(xg V—xp)

» If x; is TRUE then x4 must be TRUE
» If x4 is TRUE, then x3 must be FALSE
» If x3 is FALSE then x, must be TRUE

» If xo is TRUE then x; must be TRUE - which
it is!

32/39

2-SAT implication graph

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)
» If x; is FALSE then x; must be TRUE

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)
» If x; is FALSE then x; must be TRUE

’ﬂX,-:}XJ-

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)
» If x; is FALSE then x; must be TRUE

» —X; — XJ
» If x; is FALSE then x; must be true

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)
» If x; is FALSE then x; must be TRUE

» —X; — XJ
» If x; is FALSE then x; must be true
> ﬂXJ — Xj

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)
» If x; is FALSE then x; must be TRUE
> —x;, = Xj
» If x; is FALSE then x; must be true
> X = X
» If x; = x; and x; = Xxi then x; = X
(transitive property)

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)
» If x; is FALSE then x; must be TRUE
> —x;, = Xj
» If x; is FALSE then x; must be true
> X = X
» If x; = x; and x; = Xxi then x; = X
(transitive property)

» We can use an implication graph to represent
these relationships

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)
» If x; is FALSE then x; must be TRUE
> —x;, = Xj
» If x; is FALSE then x; must be true
> X = X
» If x; = x; and x; = Xxi then x; = X
(transitive property)

» We can use an implication graph to represent
these relationships

» Every node is variable

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)
» If x; is FALSE then x; must be TRUE
> —x;, = Xj
» If x; is FALSE then x; must be true
> X = X
» If x; = x; and x; = Xxi then x; = X
(transitive property)

» We can use an implication graph to represent
these relationships

» Every node is variable
» Every edge is an implication

33/39

2-SAT implication graph

» Suppose we have a clause C = (x; V x;)
» If x; is FALSE then x; must be TRUE
> x, — Xj
» If x; is FALSE then x; must be true
> X = X
» If x; = x; and x; = Xxi then x; = X
(transitive property)
» We can use an implication graph to represent
these relationships
» Every node is variable
» Every edge is an implication
> Every path is a (transitive) implication

33/39

2-SAT implication graph
A (x, Vx) A (%, Vx)
W)) ()
)

— ey,
-—

_'X3=>X @X =:’X e
—|X3ﬁ_'X2 @XZ: X1 :_'X,]:X e

34 /39

2-SAT implication graph

A (x, Vx) A (Tx V™)

)T () G n) ()
X, = X

2 1@

35 /39

2-SAT e P

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses
1. Create the implication graph for F

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses

1. Create the implication graph for F
2. For every variable x; do the following

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses

1. Create the implication graph for F
2. For every variable x; do the following
2.1 Check if there is a path from x; to —x;

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses

1. Create the implication graph for F

2. For every variable x; do the following
2.1 Check if there is a path from x; to —x;
2.2 Check if there is a path from —x; to x;

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses

1. Create the implication graph for F
2. For every variable x; do the following
2.1 Check if there is a path from x; to —x;
2.2 Check if there is a path from —x; to x;
2.3 If both paths exist, there is a contradiction.
Immediately reject F

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses

1. Create the implication graph for F
2. For every variable x; do the following
2.1 Check if there is a path from x; to —x;
2.2 Check if there is a path from —x; to x;
2.3 If both paths exist, there is a contradiction.
Immediately reject F

3. If there are no contradictions, accept F

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses

1. Create the implication graph for F
2. For every variable x; do the following
2.1 Check if there is a path from x; to —x;
2.2 Check if there is a path from —x; to x;
2.3 If both paths exist, there is a contradiction.
Immediately reject F

3. If there are no contradictions, accept F

» O(n) vertices + O(m) edges

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses
1. Create the implication graph for F
2. For every variable x; do the following
2.1 Check if there is a path from x; to —x;
2.2 Check if there is a path from —x; to x;
2.3 If both paths exist, there is a contradiction.
Immediately reject F

3. If there are no contradictions, accept F

(n) vertices + O(m) edges
(n) loop iterations

» O
» O

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses

1. Create the implication graph for F
2. For every variable x; do the following
2.1 Check if there is a path from x; to —x;
2.2 Check if there is a path from —x; to x;
2.3 If both paths exist, there is a contradiction.
Immediately reject F

3. If there are no contradictions, accept F

(n) vertices + O(m) edges
(n) loop iterations
PATH € P, each loop iteration is poly-time

» O(n
» O(n
|

36 /39

2-SAT e P

Input: a formula F with n variables and m clauses

1. Create the implication graph for F
2. For every variable x; do the following
2.1 Check if there is a path from x; to —x;
2.2 Check if there is a path from —x; to x;
2.3 If both paths exist, there is a contradiction.
Immediately reject F

3. If there are no contradictions, accept F

» O(n) vertices + O(m) edges

» O(n) loop iterations

» PATH € P, each loop iteration is poly-time
» O(n)+ O(m)+ O(n) - poly-time € P

36 /39

The class EXP

37/39

The class EXP

» Def: The class EXP is the set of all languages
that can be be decided in exponential time

37/39

The class EXP

» Def: The class EXP is the set of all languages
that can be be decided in exponential time

» O(2™) for some constant ¢

37/39

The class EXP

» Def: The class EXP is the set of all languages
that can be be decided in exponential time

» O(2™) for some constant ¢
» Alternate definition:

EXP = | JTIME(T(2™))

37/39

The class EXP

» Def: The class EXP is the set of all languages
that can be be decided in exponential time

» O(2™) for some constant ¢

» Alternate definition:

EXP = | JTIME(T(2™))

» EXP languages are considered “intractable”

37/39

P vs. EXP

38 /39

P vs. EXP

» Note: P C EXP

38 /39

P vs. EXP

» Note: P C EXP
» Does P = EXP?

38 /39

P vs. EXP

» Note: P C EXP
» Does P = EXP?

» Can every exponential-time algorithm be converted
to a polynomial-time algorithm?

38 /39

Time hierarchy theorem

39 /39

Time hierarchy theorem
» Time Hierarchy Theorem:
TIME(T(n)) C TIME(T (2n)?)

39/39

Time hierarchy theorem
» Time Hierarchy Theorem:
TIME(T(n)) € TIME(T(2n)3)
» Proof idea: Use diagonalization to create a

machine that contradicts all the TIME(T (n))
machines

39/39

Time hierarchy theorem
» Time Hierarchy Theorem:
TIME(T(n)) C TIME(T(2n)?)
» Proof idea: Use diagonalization to create a
machine that contradicts all the TIME(T (n))

machines
» The construction creates a machine that runs in

time O(T(2n)3)

39/39

Time hierarchy theorem
» Time Hierarchy Theorem:
TIME(T(n)) C TIME(T(2n)?)
» Proof idea: Use diagonalization to create a
machine that contradicts all the TIME(T (n))

machines
» The construction creates a machine that runs in

time O(T(2n)3)
» Glass half full: More time will always allow us
to solve more more problems

39/39

Time hierarchy theorem
» Time Hierarchy Theorem:
TIME(T(n)) C TIME(T(2n)?)
» Proof idea: Use diagonalization to create a
machine that contradicts all the TIME(T (n))

machines
» The construction creates a machine that runs in

time O(T(2n)3)
» Glass half full: More time will always allow us
to solve more more problems
» Glass half empty: Certain problems can't be
solved within a certain amount of time

39/39

Time hierarchy theorem

© ABACA USA/Empics Entertainment

Time hierarchy theorem
» Time Hierarchy Theorem:
TIME(T(n)) C TIME(T(2n)?)
» Proof idea: Use diagonalization to create a
machine that contradicts all the TIME(T (n))

machines
» The construction creates a machine that runs in

time O(T(2n)3)
» Glass half full: More time will always allow us
to solve more more problems
» Glass half empty: Certain problems can't be
solved within a certain amount of time

P C TIME(2") C TIME((2%")?) C EXP

39/39

