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Countability and Diagonalization

» We will show that some infinite sets are
“bigger” than others

» We will show that there are strictly more
languages than there are Turing machines

» This will imply that there is not a Turing
machine for every language
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Let S; and S, be sets. A bijection between S; and
S, is a one-to-one correspondence between their
elements

» Surjective: Every element from S, is mapped
to at least once

» Injective: Every element of S; maps to exactly
one element of S,
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Countable Sets

» Axiom: The natural numbers
N ={0,1,2,...} are countable

» A set S is countably infinite if there exists a
bijection N +— S

» Can also think of it as follows: can we write a
program to print out the elements of S one by
one, such that every element eventually gets
printed if we let the program run long enough?
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Countability of Square Numbers

» Proposition: The set of squares
S =1{0,1,4,9,16,...} is countably infinite
» Proof: There exists a bijection N+— §
> n+n?
» Alternate interpretation: We can write a
program that prints out n?> for n =10,1,2, ...

» Given enough time, every square number will
(eventually) be printed
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Countability of Z

Let's prove that the set of integers
Z=A...,—-3,-2,-1,0,1,2,3,...} is countably
infinite

» 0—0
1— 12— -1
32,4 =2

>
>
» 55— 36— —3
>
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Countability of N?

Let's prove that the following set is countably
infinite

N = {(x,y)|x,y € N}
i.e. every combination of 2 natural numbers

Hint: for every integer k, there are only a finite
number of (x,y) pairs that add up to k
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Countability of N?

Let's prove that the following set is countably
infinite

N = {(x,y)|x,y € N}
i.e. every combination of 2 natural numbers

» Go through all combinations that add up to 0
> 0~ (0,0)
» Go through all combinations that add up to 1
> 1~ (1,0)
> 2 (0,1)
» Go through all combinations that add up to 2
> 3 (2,0)
> 4+ (1,1)
> 5 (0,2)
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Countability of N?: dovetailing

> New “set” of combinations that add up to
a common sum total

0 1 2 3
(0,0) (072)
(1:0)
(270)

_— —
- o
- X

N -
S S

wIN|—~|O
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Countability of Q

Theorem: The rational numbers are countable

Q = {9/b|a, b€ N,b#0}

Hint: Go through all possible numbers that the
numerator and denominator can add up to
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Countability of Q

Theorem: The rational numbers are countable

Q= {a/s|a,b e N,b+0}

» 0—0

» numerator and denominator add up to 2
> 11

» numerator and denominator add up to 3
> 21521
> 351/

» numerator and denominator add up to 4
> 4153/
> 5— 13
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Countability of Q: dovetailing

> New “set” of combinations that add up to
a common sum total

1 2 3 4
1M 1/2 M3

2/1 1 2/4
311

AlWIN] -~

Skip over redundant combinations
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Uncountability of R

» AFSOC R is countable. Then there exists a
bijection 0 — rp, 1 +— np, ...
» Create a real number r*

>

| 4
>

The i-th digit of r* is different from the i-th digit
of r; (diagonalization)

r* disagrees with every single r; in the bijection
Case 1: If r* was listed at index i, then it
disagrees with itself at the i-th digit

Case 2: If r* isn't part of the list, then our
bijection is not valid
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Diagonalization of R

The assumption that R is
contable allows us to list
out all of the real numbers
(and then construct a
paradoxical number)

Digit Digit Digit Digit
0 1 2 mmn *
r 0. 1 2 8
r, 1. 6 2 9
r, 6. 4 7 3
r 1. 7 8 12?7

Construct r' by modifying the diagonals digits
until we reach a
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Diagonalization of Infinite Binary Strings

Bit0 Bit1 Bit2 Bit *
S, 0 1 0 cen 0
s 0 0 0 0 The assumption that the
! " infinite binary strings are
1 1 1 1 countable allows us to list
S2 LLL out all of the infinite binary
strings (and then construct
ses | smx | =am | was | =ss | .aa | |@paradoxical binary string)
s 1 1 0 12?7

Construct s” by modifying the diagonals bits

until we reach a
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Uncountability of Formal Languages

» Proposition: The set of formal languages on
any finite alphabet is uncountable

» Proof: We can draw a bijection between
infinite binary strings and formal languages

> Let ¥* = {wy, ws,...} be the set of all
possible stirngs

» Represent a language L; C X" using it's
characteristic binary string S;

» The i-th digit of S; s 1 if w; € L; and 0 otherwise

» The set of formal languages has a bijection
with an uncountable set; thus it must be
uncountable
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Uncountability of Formal Languages

Wo W, W o i Box (i, j):
“Is string w. part of
Lo ! 0 0 Ianguagé L,-”?
L 0 0 1

We can represent every language
using an infinite binary string
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Existence of Unrecognizable Languages

Corollary: There exist unrecognizable languages
» The set of Turing machines is countable
» The set of languages is uncountable

» So there cannot possibly be a Turing machine
to recognize every language

23 /23



