Theory of Computation Countability and Diagonalization

Arjun Chandrasekhar

We will show that some infinite sets are "bigger" than others

- We will show that some infinite sets are "bigger" than others
- We will show that there are strictly more languages than there are Turing machines

- We will show that some infinite sets are "bigger" than others
- We will show that there are strictly more languages than there are Turing machines
- ► This will imply that there is not a Turing machine for every language

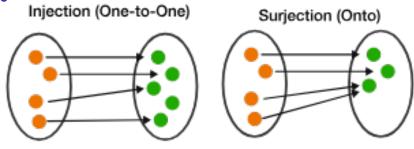
Let S_1 and S_2 be sets. A **bijection** between S_1 and S_2 is a one-to-one correspondence between their elements

Let S_1 and S_2 be sets. A **bijection** between S_1 and S_2 is a one-to-one correspondence between their elements

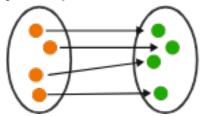
Surjective: Every element from S_2 is mapped to at least once

Let S_1 and S_2 be sets. A **bijection** between S_1 and S_2 is a one-to-one correspondence between their elements

- **Surjective:** Every element from S_2 is mapped to at least once
- ▶ **Injective:** Every element of S_1 maps to <u>exactly</u> one element of S_2



Bijection (One-to-One and Onto)



Let $\mathbb{N} = \{0, 1, 2, \dots\}$ (natural numbers)

- Let $\mathbb{N} = \{0, 1, 2, \dots\}$ (natural numbers)
- ► Let $S = \{n^2 | n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ (square integers)

- ightharpoonup Let $\mathbb{N}=\{0,1,2,\dots\}$ (natural numbers)
- ► Let $S = \{n^2 | n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ (square integers)
- ▶ Note that $S \subsetneq \mathbb{N}$. And yet...

- Let $\mathbb{N} = \{0, 1, 2, \dots\}$ (natural numbers)
- ► Let $S = \{n^2 | n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ (square integers)
- ▶ Note that $S \subseteq \mathbb{N}$. And yet...
- ightharpoonup ...there exists a bijection between $\mathbb N$ and S

- lackbox Let $\mathbb{N}=\{0,1,2,\dots\}$ (natural numbers)
- ► Let $S = \{n^2 | n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ (square integers)
- ▶ Note that $S \subsetneq \mathbb{N}$. And yet...
- ightharpoonup ...there exists a bijection between $\mathbb N$ and S
 - $ightharpoonup 0 \mapsto 0$

- Let $\mathbb{N} = \{0, 1, 2, \dots\}$ (natural numbers)
- ► Let $S = \{n^2 | n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ (square integers)
- ▶ Note that $S \subsetneq \mathbb{N}$. And yet...
- ightharpoonup ...there exists a bijection between $\mathbb N$ and S
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$

- lackbox Let $\mathbb{N}=\{0,1,2,\dots\}$ (natural numbers)
- ► Let $S = \{n^2 | n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ (square integers)
- ▶ Note that $S \subsetneq \mathbb{N}$. And yet...
- ightharpoonup ...there exists a bijection between $\mathbb N$ and S
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
 - **▶** 2 → 4

- lackbox Let $\mathbb{N}=\{0,1,2,\dots\}$ (natural numbers)
- ► Let $S = \{n^2 | n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ (square integers)
- ▶ Note that $S \subsetneq \mathbb{N}$. And yet...
- ightharpoonup ...there exists a bijection between $\mathbb N$ and S
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
 - **▶** 2 → 4
 - **▶** 3 → 9

- Let $\mathbb{N} = \{0, 1, 2, \dots\}$ (natural numbers)
- ► Let $S = \{n^2 | n \in \mathbb{N}\} = \{0, 1, 4, 9, 16, \dots\}$ (square integers)
- ▶ Note that $S \subsetneq \mathbb{N}$. And yet...
- ightharpoonup ...there exists a bijection between $\mathbb N$ and S
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
 - **≥** 2 → 4
 - **▶** 3 → 9
 - **>** . . .

▶ **Axiom:** The natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ are countable

- ▶ **Axiom:** The natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ are countable
- ▶ A set S is **countably infinite** if there exists a bijection $\mathbb{N} \mapsto S$

- ▶ **Axiom:** The natural numbers $\mathbb{N} = \{0, 1, 2, ...\}$ are countable
- ▶ A set *S* is **countably infinite** if there exists a bijection $\mathbb{N} \mapsto S$
- Can also think of it as follows: can we write a program to print out the elements of S one by one, such that every element eventually gets printed if we let the program run long enough?

Proposition: The set of squares $S = \{0, 1, 4, 9, 16, \dots\}$ is countably infinite

- **Proposition**: The set of squares $S = \{0, 1, 4, 9, 16, ...\}$ is countably infinite
- **Proof**: There exists a bijection $\mathbb{N} \mapsto S$

- **Proposition**: The set of squares $S = \{0, 1, 4, 9, 16, ...\}$ is countably infinite
- ▶ **Proof**: There exists a bijection $\mathbb{N} \mapsto S$
 - $n \mapsto n^2$

- **Proposition**: The set of squares $S = \{0, 1, 4, 9, 16, ...\}$ is countably infinite
- ▶ **Proof**: There exists a bijection $\mathbb{N} \mapsto S$
 - $n \mapsto n^2$
- ▶ Alternate interpretation: We can write a program that prints out n^2 for n = 0, 1, 2, ...

- **Proposition**: The set of squares $S = \{0, 1, 4, 9, 16, ...\}$ is countably infinite
- ▶ **Proof**: There exists a bijection $\mathbb{N} \mapsto S$
 - $n \mapsto n^2$
- ▶ Alternate interpretation: We can write a program that prints out n^2 for n = 0, 1, 2, ...
 - Given enough time, every square number will (eventually) be printed

Let's prove that the set of integers $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$ is countably infinite

Let's prove that the set of integers

 $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ is countably infinite

 $ightharpoonup 0 \mapsto 0$

Let's prove that the set of integers

- $ightharpoonup 0 \mapsto 0$
- $ightharpoonup 1 \mapsto 1, 2 \mapsto -1$

Let's prove that the set of integers

- $ightharpoonup 0 \mapsto 0$
- $ightharpoonup 1 \mapsto 1, 2 \mapsto -1$
- $ightharpoonup 3 \mapsto 2, 4 \mapsto -2$

Let's prove that the set of integers

- $ightharpoonup 0 \mapsto 0$
- $ightharpoonup 1 \mapsto 1, 2 \mapsto -1$
- $ightharpoonup 3 \mapsto 2, 4 \mapsto -2$
- \triangleright 5 \mapsto 3, 6 \mapsto -3

Let's prove that the set of integers

- $ightharpoonup 0 \mapsto 0$
- $ightharpoonup 1 \mapsto 1, 2 \mapsto -1$
- $ightharpoonup 3 \mapsto 2, 4 \mapsto -2$
- \triangleright 5 \mapsto 3, 6 \mapsto -3
- **.**...

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

i.e. every combination of 2 natural numbers

Hint: for every integer k, there are only a finite number of (x, y) pairs that add up to k

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

i.e. every combination of 2 natural numbers

Go through all combinations that add up to 0

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

i.e. every combination of 2 natural numbers

Go through all combinations that add up to 0

 0 → (0,0)

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

- Go through all combinations that add up to 0

 0 → (0,0)
- Go through all combinations that add up to 1

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

- Go through all combinations that add up to 0
 0 → (0,0)
- ► Go through all combinations that add up to 1 ► $1 \mapsto (1,0)$

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

- Go through all combinations that add up to 0
 - ightharpoonup $0 \mapsto (0,0)$
- Go through all combinations that add up to 1
 - $ightharpoonup 1 \mapsto (1,0)$
 - $ightharpoonup 2 \mapsto (0,1)$

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

- Go through all combinations that add up to 0
 0 → (0,0)
- Go through all combinations that add up to 1
 - $ightharpoonup 1 \mapsto (1,0)$
 - $ightharpoonup 2 \mapsto (0,1)$
- Go through all combinations that add up to 2

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

- Go through all combinations that add up to 0
 0 → (0,0)
- ► Go through all combinations that add up to 1
 - $ightharpoonup 1 \mapsto (1,0)$
 - \triangleright 2 \mapsto (0, 1)
- ► Go through all combinations that add up to 2 ► $3 \mapsto (2,0)$
 - $3 \mapsto (2,0)$

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

- Go through all combinations that add up to 0
 0 → (0,0)
- Go through all combinations that add up to 1
 - $ightharpoonup 1 \mapsto (1,0)$
 - \triangleright 2 \mapsto (0, 1)
- ▶ Go through all combinations that add up to 2
 - $ightharpoonup 3 \mapsto (2,0)$
 - $ightharpoonup 4 \mapsto (1,1)$

Let's prove that the following set is countably infinite

$$\mathbb{N}^2 = \{(x, y) | x, y \in \mathbb{N}\}\$$

- Go through all combinations that add up to 0
 0 → (0,0)
- Go through all combinations that add up to 1
 - $ightharpoonup 1 \mapsto (1,0)$
 - \triangleright 2 \mapsto (0, 1)
- Go through all combinations that add up to 2
 - $ightharpoonup 3 \mapsto (2,0)$
 - $ightharpoonup 4 \mapsto (1,1)$
 - \triangleright 5 \mapsto (0, 2)

Countability of \mathbb{N}^2 : dovetailing

New "set" of combinations that add up to a common sum total

	0	1	2	3			
0	(0, 0)		(0, 2)	(0,3)			
1	(1, 0)	(1, 2)	(1, 2)	(1, 3)			
2	(2, 0)	(2, 1)	(2, 2)	(2,3)			
3	(3, 0)	(3, 1)	(3, 2)	(3, 3)			

Theorem: The rational numbers are countable

$$\mathbb{Q} = \{ a/b | a, b \in \mathbb{N}, b \neq 0 \}$$

Hint: Go through all possible numbers that the numerator and denominator can add up to

$$\mathbb{Q} = \{ a/b | a, b \in \mathbb{N}, b \neq 0 \}$$

$$ightharpoonup 0 \mapsto 0$$

$$\mathbb{Q} = \{ a/b | a, b \in \mathbb{N}, b \neq 0 \}$$

- $ightharpoonup 0 \mapsto 0$
- numerator and denominator add up to 2

$$\mathbb{Q} = \{ a/b | a, b \in \mathbb{N}, b \neq 0 \}$$

- $ightharpoonup 0 \mapsto 0$
- numerator and denominator add up to 2
 - $ightharpoonup 1 \mapsto 1/1$

$$\mathbb{Q} = \{ a/b | a, b \in \mathbb{N}, b \neq 0 \}$$

- $ightharpoonup 0 \mapsto 0$
- numerator and denominator add up to 2
 - $ightharpoonup 1 \mapsto 1/1$
- numerator and denominator add up to 3

$$\mathbb{Q} = \{ a/b | \ a,b \in \mathbb{N}, b \neq 0 \}$$

- $ightharpoonup 0 \mapsto 0$
- numerator and denominator add up to 2
 - $ightharpoonup 1 \mapsto 1/1$
- numerator and denominator add up to 3
 - $ightharpoonup 2 \mapsto \frac{2}{1}$

$$\mathbb{Q} = \{ \sqrt[a]{b} | \, a,b \in \mathbb{N}, b \neq 0 \}$$

- $ightharpoonup 0 \mapsto 0$
- numerator and denominator add up to 2
 - $ightharpoonup 1 \mapsto 1/1$
- numerator and denominator add up to 3
 - ightharpoonup 2 \mapsto 2/1
 - \rightarrow 3 \mapsto 1/2

$$\mathbb{Q} = \{ a/b | \ a,b \in \mathbb{N}, b \neq 0 \}$$

- $ightharpoonup 0 \mapsto 0$
- numerator and denominator add up to 2
 - $ightharpoonup 1 \mapsto 1/1$
- numerator and denominator add up to 3
 - $ightharpoonup 2 \mapsto 2/1$
 - \rightarrow 3 \mapsto 1/2
- numerator and denominator add up to 4

$$\mathbb{Q} = \{ a/b | \ a,b \in \mathbb{N}, b \neq 0 \}$$

- $ightharpoonup 0 \mapsto 0$
- numerator and denominator add up to 2
 - $ightharpoonup 1 \mapsto 1/1$
- numerator and denominator add up to 3
 - $ightharpoonup 2 \mapsto 2/1$
 - \rightarrow 3 \mapsto 1/2
- numerator and denominator add up to 4
 - $ightharpoonup 4 \mapsto 3/1$

$$\mathbb{Q} = \{ a/b | \ a,b \in \mathbb{N}, b \neq 0 \}$$

- $ightharpoonup 0 \mapsto 0$
- numerator and denominator add up to 2
 - $ightharpoonup 1 \mapsto 1/1$
- numerator and denominator add up to 3
 - $ightharpoonup 2 \mapsto 2/1$
 - \rightarrow 3 \mapsto 1/2
- numerator and denominator add up to 4
 - $ightharpoonup 4 \mapsto 3/1$
 - $ightharpoonup 5 \mapsto 1/3$

$$\mathbb{Q} = \{ a/b | a, b \in \mathbb{N}, b \neq 0 \}$$

- $ightharpoonup 0 \mapsto 0$
- numerator and denominator add up to 2
 - $ightharpoonup 1 \mapsto 1/1$
- numerator and denominator add up to 3
 - $ightharpoonup 2 \mapsto 2/1$
 - \rightarrow 3 \mapsto 1/2
- numerator and denominator add up to 4
 - $ightharpoonup 4 \mapsto 3/1$
 - $ightharpoonup 5 \mapsto 1/3$

Countability of Q: dovetailing

New "set" of combinations that add up to a common sum total

	1	2	3	4	
1	1/1	1/2	1/3	1/4	
2	2/1	1	2/3	2/4	Ä
3	3/1	3/2	1	3/4	:
4	4/1	2	4/3	1	

Skip over redundant combinations

Proposition: The set of all possible <u>finite</u> binary strings is countable

List all possible strings of length 1

- List all possible strings of length 1
 - $ightharpoonup 0 \mapsto 0$

- List all possible strings of length 1
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$

- List all possible strings of length 1
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
- List all possible strings of length 2

- List all possible strings of length 1
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
- List all possible strings of length 2
 - **▶** 3 → 00

- List all possible strings of length 1
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
- List all possible strings of length 2
 - **▶** 3 → 00
 - **▶** 4 → 01

- List all possible strings of length 1
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
- List all possible strings of length 2
 - **▶** 3 → 00
 - **▶** 4 → 01
 - **▶** 5 → 10

- List all possible strings of length 1
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
- List all possible strings of length 2
 - **▶** 3 → 00
 - **▶** 4 → 01
 - **▶** 5 → 10
 - **▶** 6 → 11

- List all possible strings of length 1
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
- List all possible strings of length 2
 - **▶** 3 → 00
 - **▶** 4 → 01
 - **▶** 5 → 10
 - **▶** 6 → 11
- List all possible strings of length 3

- List all possible strings of length 1
 - $ightharpoonup 0 \mapsto 0$
 - $ightharpoonup 1 \mapsto 1$
- List all possible strings of length 2
 - **▶** 3 → 00
 - **▶** 4 → 01
 - **▶** 5 → 10
 - $ightharpoonup 6 \mapsto 11$
- List all possible strings of length 3
 - . . .

Countability of Java Programs

Proposition: The set of all possible java programs is countable

Countability of Java Programs

Proposition: The set of all possible java programs is countable

► List all possible programs with 0 characters

Countability of Java Programs

Proposition: The set of all possible java programs is countable

- List all possible programs with 0 characters
- List all possible programs with 1 character

Countability of Java Programs

Proposition: The set of all possible java programs is countable

- List all possible programs with 0 characters
- List all possible programs with 1 character
- List all possible programs with 2 characters

Countability of Java Programs

Proposition: The set of all possible java programs is countable

- List all possible programs with 0 characters
- List all possible programs with 1 character
- List all possible programs with 2 characters
- **•** . . .

Proposition: The set of all possible Turing machines on the alphabet $\{0,1\}$ is countable

Proposition: The set of all possible Turing machines on the alphabet $\{0, 1\}$ is countable

List all possible TMs with 1 state

Proposition: The set of all possible Turing machines on the alphabet $\{0, 1\}$ is countable

- List all possible TMs with 1 state
- List all possible TMs with 2 states

Proposition: The set of all possible Turing machines on the alphabet $\{0, 1\}$ is countable

- ► List all possible TMs with 1 state
- ► List all possible TMs with 2 states
- List all possible TMs with 3 states

Proposition: The set of all possible Turing machines on the alphabet $\{0,1\}$ is countable

- ► List all possible TMs with 1 state
- List all possible TMs with 2 states
- List all possible TMs with 3 states
- **.**..

Theorem: The real numbers \mathbb{R} are uncountable

Theorem: The real numbers \mathbb{R} are uncountable

▶ **Proof Idea:** Assume for sake of contradiction that \mathbb{R} is countable, and construct a paradoxical number r^*

Theorem: The real numbers \mathbb{R} are uncountable

- ▶ **Proof Idea:** Assume for sake of contradiction that \mathbb{R} is countable, and construct a paradoxical number r^*
- Technique diagonalization

▶ AFSOC \mathbb{R} is countable. Then there exists a bijection $0 \mapsto r_0, 1 \mapsto r_1, \dots$

- ▶ AFSOC \mathbb{R} is countable. Then there exists a bijection $0 \mapsto r_0, 1 \mapsto r_1, \dots$
- ightharpoonup Create a real number r^*

- ▶ AFSOC \mathbb{R} is countable. Then there exists a bijection $0 \mapsto r_0, 1 \mapsto r_1, \ldots$
- \triangleright Create a real number r^*
 - ► The i-th digit of r^* is different from the i-th digit of r_i (diagonalization)

- ▶ AFSOC \mathbb{R} is countable. Then there exists a bijection $0 \mapsto r_0, 1 \mapsto r_1, \dots$
- \triangleright Create a real number r^*
 - The i-th digit of r^* is different from the i-th digit of r_i (diagonalization)
 - r^* disagrees with every single r_i in the bijection

Uncountal

- AFSC biject
- ► Creat

exists a

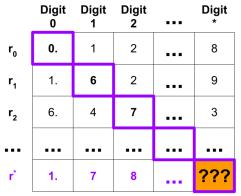
e i-th digit

bijection

- ▶ AFSOC \mathbb{R} is countable. Then there exists a bijection $0 \mapsto r_0, 1 \mapsto r_1, \dots$
- \triangleright Create a real number r^*
 - The i-th digit of r^* is different from the i-th digit of r_i (diagonalization)
 - $ightharpoonup r^*$ disagrees with every single r_i in the bijection
 - ► Case 1: If r* was listed at index i, then it disagrees with itself at the i-th digit

- ▶ AFSOC \mathbb{R} is countable. Then there exists a bijection $0 \mapsto r_0, 1 \mapsto r_1, \dots$
- \triangleright Create a real number r^*
 - The i-th digit of r^* is different from the i-th digit of r_i (diagonalization)
 - $ightharpoonup r^*$ disagrees with every single r_i in the bijection
 - ► Case 1: If r* was listed at index i, then it disagrees with itself at the i-th digit
 - Case 2: If r* isn't part of the list, then our bijection is not valid

Diagonalization of $\mathbb R$



The assumption that \mathbb{R} is contable allows us to list out all of the real numbers (and then construct a paradoxical number)

Construct r* by modifying the diagonals digits until we reach a contradiction

Uncountability of infinite binary strings

Proposition: The set of <u>infinite</u> binary strings is uncountable

Uncountability of infinite binary strings

Proposition: The set of <u>infinite</u> binary strings is uncountable

► Hint: proceed by contradiction

Uncountability of infinite binary strings

Proposition: The set of <u>infinite</u> binary strings is uncountable

- ► Hint: proceed by contradiction
- construct a binary string that causes problems

► AFSOC the inifinite binary strings are countable. Then there is a bijection with N

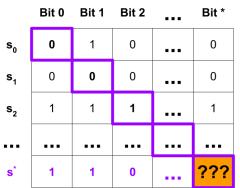
- ► AFSOC the inifinite binary strings are countable. Then there is a bijection with N
- Create an infinite binary string s* that disagrees with every string in the bijection

- ► AFSOC the inifinite binary strings are countable. Then there is a bijection with N
- Create an infinite binary string s* that disagrees with every string in the bijection
 - The i-th bit of s^* is different from the i-th bit of s_i (diagonalization)

- ► AFSOC the inifinite binary strings are countable. Then there is a bijection with N
- Create an infinite binary string s* that disagrees with every string in the bijection
 - The i-th bit of s^* is different from the i-th bit of s_i (diagonalization)
- ► Case 1: If s* was listed at index i, then it disagrees with itself at the i-th digit

- ► AFSOC the inifinite binary strings are countable. Then there is a bijection with N
- Create an infinite binary string s* that disagrees with every string in the bijection
 - The i-th bit of s^* is different from the i-th bit of s_i (diagonalization)
- ► Case 1: If s* was listed at index i, then it disagrees with itself at the i-th digit
- ► Case 2: If s* isn't part of the list, then our bijection is not valid

Diagonalization of Infinite Binary Strings



The assumption that the infinite binary strings are countable allows us to list out all of the infinite binary strings (and then construct a paradoxical binary string)

Construct s* by modifying the diagonals bits until we reach a contradiction

► **Proposition:** The set of formal languages on any finite alphabet is uncountable

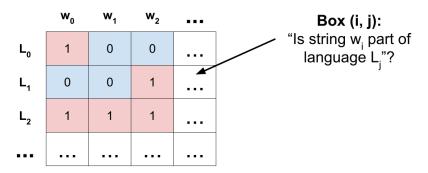
- ► **Proposition:** The set of formal languages on any finite alphabet is uncountable
- ▶ **Proof:** We can draw a bijection between infinite binary strings and formal languages

- ► **Proposition:** The set of formal languages on any finite alphabet is uncountable
- ► **Proof:** We can draw a bijection between infinite binary strings and formal languages
- Let $\Sigma^* = \{w_1, w_2, \dots\}$ be the set of all possible stirngs

- ▶ **Proposition:** The set of formal languages on any finite alphabet is uncountable
- ▶ Proof: We can draw a bijection between infinite binary strings and formal languages
- Let $\Sigma^* = \{w_1, w_2, ...\}$ be the set of all possible stirngs
- ▶ Represent a language $L_j \subseteq \Sigma^*$ using it's characteristic binary string S_j

- ▶ **Proposition:** The set of formal languages on any finite alphabet is uncountable
- ▶ **Proof:** We can draw a bijection between infinite binary strings and formal languages
- Let $\Sigma^* = \{w_1, w_2, \dots\}$ be the set of all possible stirngs
- ▶ Represent a language $L_j \subseteq \Sigma^*$ using it's characteristic binary string S_j
 - ▶ The i-th digit of S_i s 1 if $w_i \in L_i$ and 0 otherwise

- ▶ **Proposition:** The set of formal languages on any finite alphabet is uncountable
- ▶ **Proof:** We can draw a bijection between infinite binary strings and formal languages
- Let $\Sigma^* = \{w_1, w_2, \dots\}$ be the set of all possible stirngs
- ▶ Represent a language $L_j \subseteq \Sigma^*$ using it's characteristic binary string S_j
 - ▶ The i-th digit of S_j s 1 if $w_i \in L_j$ and 0 otherwise
- ► The set of formal languages has a bijection with an uncountable set; thus it must be uncountable



We can represent every language using an infinite binary string

Corollary: There exist unrecognizable languages

Corollary: There exist unrecognizable languages

▶ The set of Turing machines is countable

Corollary: There exist unrecognizable languages

- ▶ The set of Turing machines is countable
- ► The set of languages is uncountable

Corollary: There exist unrecognizable languages

- ▶ The set of Turing machines is countable
- ► The set of languages is uncountable
- So there cannot possibly be a Turing machine to recognize every language