DFA Closure Properties

Arjun Chandrasekhar

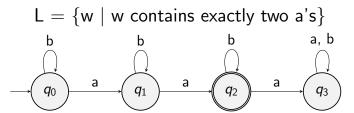
▶ Let $\Sigma = \{a, b\}$

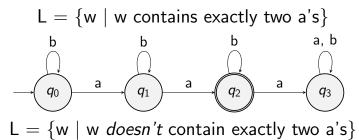
- $\blacktriangleright \text{ Let } \Sigma = \{a, b\}$
- Let
 L = {w | w contains exactly two a's}

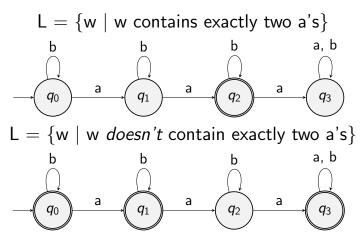
- ▶ Let $\Sigma = \{a, b\}$
- Let
 L = {w | w contains exactly two a's}
- ► Then the complement of L is
 L^c = {w | w doesn't contain exactly two a's}

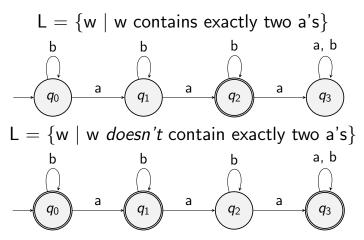
- ▶ Let $\Sigma = \{a, b\}$
- Let
 L = {w | w contains exactly two a's}
- Then the complement of L is L^c = {w | w doesn't contain exactly two a's}
- \triangleright Let's design DFAs to recognize L and L^c

 $L = \{w \mid w \text{ contains exactly two a's}\}\$

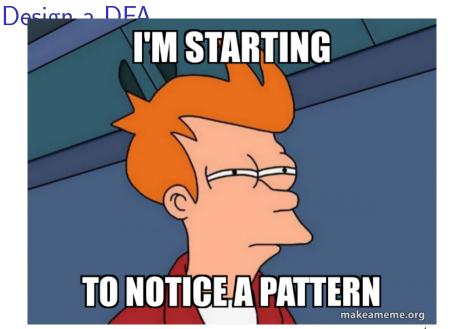








Notice a pattern?



Proposition: Regular languages are closed under complement

▶ In other words, if L is a regular language, then we claim that L^c must also be regular

- ▶ In other words, if L is a regular language, then we claim that L^c must also be regular
- ► What do we know about *L*?

- ▶ In other words, if L is a regular language, then we claim that L^c must also be regular
- ▶ What do we know about *L*?
 - L is regular...

- ▶ In other words, if L is a regular language, then we claim that L^c must also be regular
- ▶ What do we know about *L*?
 - L is regular...
 - and thus it is recognized by a DFA

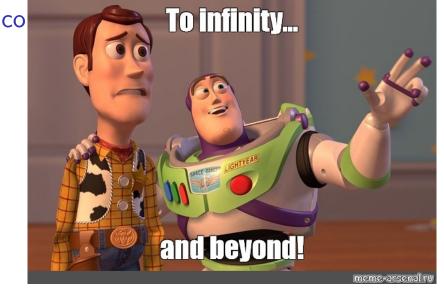
- ▶ In other words, if L is a regular language, then we claim that L^c must also be regular
- ▶ What do we know about *L*?
 - L is regular...
 - and thus it is recognized by a DFA
- \blacktriangleright What do we want to show for L^c ?

- ▶ In other words, if L is a regular language, then we claim that L^c must also be regular
- ▶ What do we know about *L*?
 - L is regular...
 - ▶ and thus it is recognized by a DFA
- \blacktriangleright What do we want to show for L^c ?
 - ightharpoonup That L^c is also regular...

- ▶ In other words, if L is a regular language, then we claim that L^c must also be regular
- ▶ What do we know about *L*?
 - L is regular...
 - and thus it is recognized by a DFA
- \triangleright What do we want to show for L^c ?
 - ightharpoonup That L^c is also regular...
 - \triangleright i.e., there is also a DFA to recognize L^c

Technique: Go through every single regular language one by one, and show that its complement is also regular

Closure of regular languages under



Technique: Use the formal definition of a DFA to construct the complement DFA

▶ **Proof idea:** Since *L* is regular, there must be a DFA *D* that recognizes *L*.

- ▶ Proof idea: Since L is regular, there must be a DFA D that recognizes L.
- We will use this to construct a DFA D^c that recognizes L^c .

- ▶ Proof idea: Since L is regular, there must be a DFA D that recognizes L.
- We will use this to construct a DFA D^c that recognizes L^c .
- This is actually quite simple!

- ▶ Proof idea: Since L is regular, there must be a DFA D that recognizes L.
- We will use this to construct a DFA D^c that recognizes L^c .
- This is actually quite simple!
 - We simply start with D, and then we flip the accept and reject states.

- ▶ Proof idea: Since L is regular, there must be a DFA D that recognizes L.
- We will use this to construct a DFA D^c that recognizes L^c .
- This is actually quite simple!
 - We simply start with D, and then we flip the accept and reject states.
- Now let's try to give an airtight proof!

Suppose L is regular

- Suppose L is regular
- ► There is a DFA $D = (Q, \Sigma, \delta, q_s, F)$ that recognizes L

- Suppose L is regular
- ► There is a DFA $D = (Q, \Sigma, \delta, q_s, F)$ that recognizes L
- We will construct a DFA $D^c = (Q^c, \Sigma^c, \delta^c, q_s^c, F^c)$ to recognize L^c

- Suppose L is regular
- ► There is a DFA $D = (Q, \Sigma, \delta, q_s, F)$ that recognizes L
- We will construct a DFA $D^c = (Q^c, \Sigma^c, \delta^c, q_s^c, F^c)$ to recognize L^c $Q^c = Q$ (same states)

- Suppose L is regular
- ► There is a DFA $D = (Q, \Sigma, \delta, q_s, F)$ that recognizes L
- We will construct a DFA $D^c = (Q^c, \Sigma^c, \delta^c, q_s^c, F^c)$ to recognize L^c
 - $ightharpoonup Q^c = Q$ (same states)
 - $ightharpoonup \Sigma^c = \Sigma$ (same alphabet)

- Suppose L is regular
- ► There is a DFA $D = (Q, \Sigma, \delta, q_s, F)$ that recognizes L
- We will construct a DFA $D^c = (Q^c, \Sigma^c, \delta^c, q_s^c, F^c)$ to recognize L^c
 - $ightharpoonup Q^c = Q$ (same states)
 - $ightharpoonup \Sigma^c = \Sigma$ (same alphabet)
 - $ightharpoonup \delta^c = \delta$ (same transitions)

- ► Suppose *L* is regular
- ► There is a DFA $D = (Q, \Sigma, \delta, q_s, F)$ that recognizes L
- We will construct a DFA $D^c = (Q^c, \Sigma^c, \delta^c, q_s^c, F^c)$ to recognize L^c
 - $ightharpoonup Q^c = Q$ (same states)
 - $ightharpoonup \Sigma^c = \Sigma$ (same alphabet)
 - $ightharpoonup \delta^c = \delta$ (same transitions)
 - $ightharpoonup q_s^c = q_s$ (same start state)

- ► Suppose *L* is regular
- ► There is a DFA $D = (Q, \Sigma, \delta, q_s, F)$ that recognizes L
- We will construct a DFA $D^c = (Q^c, \Sigma^c, \delta^c, q_s^c, F^c)$ to recognize L^c
 - $ightharpoonup Q^c = Q$ (same states)
 - $ightharpoonup \Sigma^c = \Sigma$ (same alphabet)
 - $ightharpoonup \delta^c = \delta$ (same transitions)
 - $ightharpoonup q_s^c = q_s$ (same start state)
 - ▶ $F^c = Q \setminus F$ (flip the accept/reject states)

Let Σ be an alphabet, $L \subseteq \Sigma^*$ be a formal language

- Let Σ be an alphabet, $L \subseteq \Sigma^*$ be a formal language
- Let $w \in \Sigma^*$ be a string. Then w^r is the *reversal* of w, i.e. all the characters of w backwards

- Let Σ be an alphabet, $L \subseteq \Sigma^*$ be a formal language
- Let $w \in \Sigma^*$ be a string. Then w^r is the *reversal* of w, i.e. all the characters of w backwards
- ▶ $L^r = \{w^r | w \in L\}$ is the *reversal* of L, i.e. the backwards version of all the strings in L

 $ightharpoonup L = \{w \mid w \text{ starts with a and ends with b}\}$

- $ightharpoonup L = \{ w \mid w \text{ starts with a and ends with b} \}$
 - $ightharpoonup L^r = \{ w \mid w \text{ starts with b and ends with a} \}$

- ▶ $L = \{w \mid w \text{ starts with a and ends with b}\}$
 - $ightharpoonup L^r = \{w \mid w \text{ starts with b and ends with a}\}$
- $ightharpoonup L = \{w \mid w \text{ contains aab}\}$

- $ightharpoonup L = \{ w \mid w \text{ starts with a and ends with b} \}$
 - $ightharpoonup L^r = \{ w \mid w \text{ starts with b and ends with a} \}$
- $ightharpoonup L = \{w \mid w \text{ contains aab}\}$
 - $ightharpoonup L^r = \{ w \mid w \text{ contains baa} \}$

- $ightharpoonup L = \{ w \mid w \text{ starts with a and ends with b} \}$
 - $ightharpoonup L^r = \{ w \mid w \text{ starts with b and ends with a} \}$
- $ightharpoonup L = \{w \mid w \text{ contains aab}\}$
 - $ightharpoonup L^r = \{ w \mid w \text{ contains baa} \}$
- $ightharpoonup L = \{w \mid w \text{ is an even integer}\}$

- $ightharpoonup L = \{ w \mid w \text{ starts with a and ends with b} \}$
 - $ightharpoonup L^r = \{ w \mid w \text{ starts with b and ends with a} \}$
- $ightharpoonup L = \{w \mid w \text{ contains aab}\}$
 - $ightharpoonup L^r = \{w \mid w \text{ contains baa}\}$
- $ightharpoonup L = \{w \mid w \text{ is an even integer}\}$
 - $L^r = \{ w \mid w \text{ starts with 0, 2, 4, 6, 8} \}$

Let $\Sigma = \{0, 1\}$, and let $L = \{w | w \text{ starts with } 01\}$. Which of the following strings are in L^r

- **A)** 01
- **B)** 1010
- **C)** 0101
- **D)** 1111110

Let $\Sigma = \{0, 1\}$, and let $L = \{w | w \text{ starts with } 01\}$. Which of the following strings are in L^r

- **A)** 01
- **B)** 1010 ✓
- **C)** 0101
- **D)** 11111110 ✓

- $\blacktriangleright \text{ Let } \Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}, \dots, \begin{bmatrix} 9 \\ 9 \\ 9 \end{bmatrix} \right\}$
- ► Let $B = \{w \in \Sigma^* \mid \text{the top row} + \text{the middle row} = \text{the bottom row}\}$

- $\blacktriangleright \text{ Let } \Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}, \dots, \begin{bmatrix} 9 \\ 9 \\ 9 \end{bmatrix} \right\}$
- ► Let $B = \{w \in \Sigma^* \mid \text{the top row} + \text{the middle row} = \text{the bottom row}\}$
- $\begin{vmatrix} 4 \\ 3 \\ 7 \end{vmatrix} \begin{vmatrix} 2 \\ 0 \\ 2 \end{vmatrix} \begin{vmatrix} 5 \\ 1 \\ 6 \end{vmatrix} \in B: \ 425 + 301 = 726$

- $\blacktriangleright \text{ Let } \Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}, \dots, \begin{bmatrix} 9 \\ 9 \\ 9 \end{bmatrix} \right\}$
- ► Let $B = \{w \in \Sigma^* \mid \text{the top row} + \text{the middle row} = \text{the bottom row}\}$
- $\begin{array}{|c|c|c|c|c|c|} \hline & 4 & 2 & 5 \\ 3 & 0 & 1 \\ 7 & 2 & 6 \\ \hline \end{array} \in B \colon 425 + 301 = 726$

Let $B = \{ w \in \Sigma^* \mid \text{the top row} + \text{the middle row} = \text{the bottom row} \}$

Which of the following strings are in B?

A.
$$\begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix}$$
 C. $\begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix}$

B.
$$\begin{bmatrix} 0 \\ 7 \\ 8 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 D. $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$

Let $B = \{ w \in \Sigma^* \mid \text{the top row} + \text{the middle row} = \text{the bottom row} \}$

Which of the following strings are in B?

A.
$$\begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix} \checkmark$$
 C. $\begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix}$

$$\mathbf{B.} \begin{bmatrix} \mathbf{0} \\ \mathbf{7} \\ 8 \end{bmatrix} \begin{bmatrix} \mathbf{3} \\ \mathbf{7} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ 1 \\ 2 \end{bmatrix} \checkmark \qquad \mathbf{D.} \begin{bmatrix} \mathbf{1} \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} \mathbf{4} \\ 5 \\ 6 \end{bmatrix} \begin{bmatrix} \mathbf{7} \\ 8 \\ 9 \end{bmatrix}$$

 $B^r = \{ w^r | w \in B \}$

- \triangleright $B^r = \{w^r | w \in B\}$
- ► That is, $B^r = \{w \in \Sigma^* \mid \text{the top row reversed} + \text{the middle row reversed} = \text{the bottom row reversed}\}$

- \triangleright $B^r = \{w^r | w \in B\}$
- ► That is, $B^r = \{w \in \Sigma^* \mid \text{the top row reversed} + \text{the middle row reversed} = \text{the bottom row reversed}\}$

$$\begin{vmatrix} 5 & 2 & 4 \\ 1 & 0 & 3 \\ 6 & 2 & 7 \end{vmatrix} \in B^r : 425 + 301 = 726$$

- \triangleright $B^r = \{w^r | w \in B\}$
- ► That is, $B^r = \{w \in \Sigma^* \mid \text{the top row reversed} + \text{the middle row reversed} = \text{the bottom row reversed}\}$

 $B^r = \{ w \in \Sigma^* \mid \text{the top row reversed} + \text{the middle row reversed} = \text{the bottom row reversed} \}$

Which of the following strings are in B^r ?

A.
$$\begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix}$$
 C. $\begin{bmatrix} 2 \\ 8 \\ 0 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix} \begin{bmatrix} 7 \\ 1 \\ 9 \end{bmatrix}$

$$\mathbf{B.} \begin{bmatrix} \mathbf{0} \\ 7 \\ 8 \end{bmatrix} \begin{bmatrix} \mathbf{3} \\ 7 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ 1 \\ 2 \end{bmatrix} \qquad \mathbf{D.} \begin{bmatrix} \mathbf{9} \\ 8 \\ 7 \end{bmatrix} \begin{bmatrix} \mathbf{6} \\ 5 \\ 2 \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ 2 \\ 4 \end{bmatrix}$$

 $B^r = \{ w \in \Sigma^* \mid \text{the top row reversed} + \text{the middle row reversed} = \text{the bottom row reversed} \}$

Which of the following strings are in B^r ?

A.
$$\begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix} \checkmark$$
 C. $\begin{bmatrix} 2 \\ 8 \\ 0 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix} \begin{bmatrix} 7 \\ 1 \\ 9 \end{bmatrix} \checkmark$

B.
$$\begin{bmatrix} 0 \\ 7 \\ 8 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
 D. $\begin{bmatrix} 9 \\ 8 \\ 7 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \checkmark$

Let's prove B^r is a regular language

▶ What do we want to show?

- ► What do we want to show?
 - \blacktriangleright Want to show there is a DFA D^r to recognize B^r

- ► What do we want to show?
 - ▶ Want to show there is a DFA D^r to recognize B^r
- Proof idea: construct at DFA that goes column by column, performs addition on that column

- ▶ What do we want to show?
 - ightharpoonup Want to show there is a DFA D^r to recognize B^r
- Proof idea: construct at DFA that goes column by column, performs addition on that column
 - Use the states to keep track of the carry

- ► What do we want to show?
 - \blacktriangleright Want to show there is a DFA D^r to recognize B^r
- Proof idea: construct at DFA that goes column by column, performs addition on that column
 - Use the states to keep track of the carry
 - If at any point top row + middle row + carry ≠ bottom row, we move to a reject state and loop

- ► What do we want to show?
 - ▶ Want to show there is a DFA D^r to recognize B^r
- Proof idea: construct at DFA that goes column by column, performs addition on that column
 - Use the states to keep track of the carry
 - If at any point top row + middle row + carry ≠ bottom row, we move to a reject state and loop
 - Otherwise if we reach the end of the input and carry = 0, we accept

- ► What do we want to show?
 - \blacktriangleright Want to show there is a DFA D^r to recognize B^r
- Proof idea: construct at DFA that goes column by column, performs addition on that column
 - Use the states to keep track of the carry
 - If at any point top row + middle row + carry ≠ bottom row, we move to a reject state and loop
 - Otherwise if we reach the end of the input and carry = 0, we accept
- Proof: see board

Proposition: Regular languages are closed under reversal

Proposition: Regular languages are closed under reversal

▶ That is, if L is regular, then L^r is regular

Proposition: Regular languages are closed under reversal

- ▶ That is, if L is regular, then L^r is regular
- You will prove this on a future homework

Perfect shuffle

 \blacktriangleright Let A, B be regular languages

- ► Let A, B be regular languages
- The perfect shuffle of A and B is $L = \{ w \mid w = a_1b_1a_2b_2 \dots a_nb_n \text{ where } a_1a_2 \dots a_n \in A \text{ and } b_1b_2 \dots b_n \in B \}$

- ► Let A, B be regular languages
- The perfect shuffle of A and B is $L = \{w \mid w = a_1b_1a_2b_2...a_nb_n \text{ where } a_1a_2...a_n \in A \text{ and } b_1b_2...b_n \in B\}$
- The odd characters form a string in A

- ► Let A, B be regular languages
- The perfect shuffle of A and B is $L = \{w \mid w = a_1b_1a_2b_2...a_nb_n \text{ where } a_1a_2...a_n \in A \text{ and } b_1b_2...b_n \in B\}$
- ► The odd characters form a string in A
- The even characters form a string in B

Let $A = \{0, 00, 000, \dots\}$ (i.e. all 0's, no 1's)

- Let $A = \{0, 00, 000, \dots\}$ (i.e. all 0's, no 1's)
- ▶ Let $B = \{1, 11, 111, \dots\}$ (i.e. all 1's, no 0's)

- Let $A = \{0, 00, 000, \dots\}$ (i.e. all 0's, no 1's)
- Let $B = \{1, 11, 111, \dots\}$ (i.e. all 1's, no 0's)
- ▶ $010101 \in PERFECT-SHUFFLE(A, B)$

- Let $A = \{0, 00, 000, \dots\}$ (i.e. all 0's, no 1's)
- Let $B = \{1, 11, 111, \dots\}$ (i.e. all 1's, no 0's)
- ▶ $010101 \in PERFECT-SHUFFLE(A, B)$
 - **▶** 000 ∈ *A*

- Let $A = \{0, 00, 000, \dots\}$ (i.e. all 0's, no 1's)
- Let $B = \{1, 11, 111, \dots\}$ (i.e. all 1's, no 0's)
- ▶ $010101 \in PERFECT-SHUFFLE(A, B)$
 - **▶** 000 ∈ *A*
 - **▶** 111 ∈ *B*

- Let $A = \{0, 00, 000, \dots\}$ (i.e. all 0's, no 1's)
- Let $B = \{1, 11, 111, \dots\}$ (i.e. all 1's, no 0's)
- ▶ $010101 \in PERFECT-SHUFFLE(A, B)$
 - **▶** 000 ∈ *A*
 - **▶** 111 ∈ *B*
- ▶ $010100 \notin PERFECT-SHUFFLE(A, B)$

- Let $A = \{0, 00, 000, \dots\}$ (i.e. all 0's, no 1's)
- Let $B = \{1, 11, 111, \dots\}$ (i.e. all 1's, no 0's)
- ▶ $010101 \in PERFECT-SHUFFLE(A, B)$
 - **▶** 000 ∈ *A*
 - ▶ 111 ∈ B
- **D** 010100 ∉ PERFECT-SHUFFLE(A, B)
 - **▶** 000 ∈ *A*

- Let $A = \{0, 00, 000, \dots\}$ (i.e. all 0's, no 1's)
- Let $B = \{1, 11, 111, \dots\}$ (i.e. all 1's, no 0's)
- ▶ $010101 \in PERFECT-SHUFFLE(A, B)$
 - **▶** 000 ∈ *A*
 - **▶** 111 ∈ B
- **DIVIDITION** ◆ PERFECT-SHUFFLE(A, B)
 - **▶** 000 ∈ *A*
 - **►** 110 ∉ B

```
Let \Sigma = \{a, b\}.

Let A = \{w | w \text{ has an even number of a's} \}

Let B = \{w | w \text{ ends with b} \}

Which of the following strings are in

PERFECT-SHUFFLE(A, B)?
```

- A) aababaaa
- B) babababb
- C) baabbaabbb
- D) aabab

```
Let \Sigma = \{a, b\}.

Let A = \{w | w \text{ has an even number of a's} \}

Let B = \{w | w \text{ ends with b} \}

Which of the following strings are in

PERFECT-SHUFFLE(A, B)?
```

- A) aababaaa
- **B)** babababb √
- **C)** baabbaabbb √
- D) aabab

► **Proposition:** Regular languages are closed under the perfect shuffle operation

- Proposition: Regular languages are closed under the perfect shuffle operation
 - ► This means that if *A* and *B* are regular, then PERFECT-SHUFFLE(*A*, *B*) is regular

- Proposition: Regular languages are closed under the perfect shuffle operation
 - ► This means that if *A* and *B* are regular, then PERFECT-SHUFFLE(*A*, *B*) is regular
 - ► What do we know about A and B?

- Proposition: Regular languages are closed under the perfect shuffle operation
 - ► This means that if *A* and *B* are regular, then PERFECT-SHUFFLE(*A*, *B*) is regular
 - ► What do we know about A and B?
 - There exist DFAs D_A and D_B to recognize A and B, respectively

- Proposition: Regular languages are closed under the perfect shuffle operation
 - ► This means that if *A* and *B* are regular, then PERFECT-SHUFFLE(*A*, *B*) is regular
 - ► What do we know about A and B?
 - There exist DFAs D_A and D_B to recognize A and B, respectively
 - ► What do we want to show for PERFECT-SHUFFLE(*A*, *B*)?

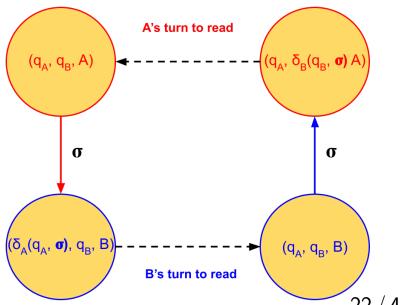
- ► **Proposition:** Regular languages are closed under the perfect shuffle operation
 - ► This means that if *A* and *B* are regular, then PERFECT-SHUFFLE(*A*, *B*) is regular
 - ► What do we know about A and B?
 - There exist DFAs D_A and D_B to recognize A and B, respectively
 - What do we want to show for PERFECT-SHUFFLE(A, B)?
 - ► There exists a DFA *D* that recognizes PERFECT-SHUFFLE(*A*, *B*)

► **Proposition:** Regular languages are closed under the perfect shuffle operation

- ► **Proposition:** Regular languages are closed under the perfect shuffle operation
- ▶ **Proof idea:** Using D_A and D_B , we will construct a DFA runs the two machines and checks if A accepts the odd characters and B accepts the even characters

- ► **Proposition:** Regular languages are closed under the perfect shuffle operation
- ▶ **Proof idea:** Using D_A and D_B , we will construct a DFA runs the two machines and checks if A accepts the odd characters and B accepts the even characters
- ► **Technique:** Run two DFAs *in alternation* using Cartesian product, and an extra variable to keep track of turns

Perfect shuffle idea



Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $\delta((q_A, q_B, A), \sigma) = (\delta_A(q_A, \sigma), q_B, B)$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $ightharpoonup Q = Q_A \times Q_B \times \{A, B\}$

- $\blacktriangleright F = F_A \times F_B \times \{A\}$

Perfect shuffle closure - states

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- ▶ Each state is a combination of 3 elements:

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- \triangleright $Q = Q_A \times Q_B \times \{A, B\}$
- Each state is a combination of 3 elements:
 - ightharpoonup A state $q_A \in Q_A$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- Each state is a combination of 3 elements:
 - ▶ A state $q_A \in Q_A$
 - ▶ A state $q_B \in Q_B$

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- \triangleright $Q = Q_A \times Q_B \times \{A, B\}$
- Each state is a combination of 3 elements:
 - ightharpoonup A state $q_A \in Q_A$
 - ▶ A state $q_B \in Q_B$
 - ► A variable A or B that keeps track of turns

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $\delta((q_A, q_B, A), \sigma) = (\delta_A(q_A, \sigma), q_B, B)$
 - ► When it's A's turn, we transition A's state, keep B's state the same, and switch to B's turn to read

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- - ► When it's A's turn, we transition A's state, keep B's state the same, and switch to B's turn to read
- \blacktriangleright $\delta((q_A, q_B, B), \sigma) = (q_A, \delta_B(q_B, \sigma), A)$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- - ► When it's A's turn, we transition A's state, keep B's state the same, and switch to B's turn to read
- $\delta((q_A, q_B, B), \sigma) = (q_A, \delta_B(q_B, \sigma), A)$
 - When it's B's turn, we transition B's state, keep A's state the same, and switch to A's turn to read

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

$$q_s = (q_{s_A}, q_{s_B}, A)$$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- ▶ We start out in A's start state

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- We start out in A's start state
- We start out in B's start state

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- We start out in A's start state
- ▶ We start out in B's start state
- Initially, it's A's turn to read

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

$$ightharpoonup F = F_A \times F_B \times \{A\}$$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $\blacktriangleright F = F_A \times F_B \times \{A\}$
- A's state should be one of its accept states.

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $ightharpoonup F = F_A \times F_B \times \{A\}$
- A's state should be one of its accept states.
- B's state should also be one of its accept states

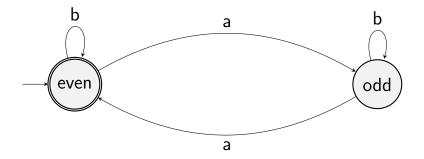
Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $ightharpoonup F = F_A \times F_B \times \{A\}$
- A's state should be one of its accept states.
- ▶ B's state should also be one of its accept states
- ▶ At the end it should be A's turn to read.

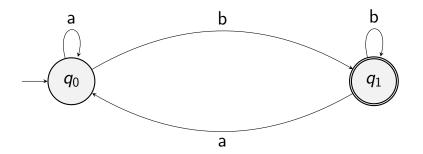
Perfect shuffle example

DFA for $A = \{w | w \text{ has an even number of a's}\}$



Perfect shuffle example

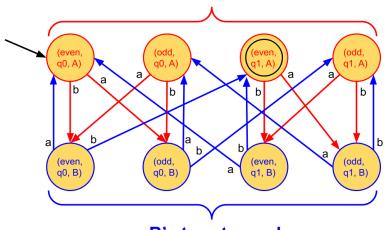
DFA for $B = \{w | w \text{ ends with b}\}$



Perfect shuffle example

DFA for PERFECT-SHUFFLE(A, B)

A's turn to read



B's turn to read

▶ Union:

$$A \cup B = \{w | w \in A \text{ or } w \in B\}$$

▶ Union:

$$A \cup B = \{w | w \in A \text{ or } w \in B\}$$

Concatenation:

$$A \circ B = \{ w = w_1 w_2 | w_1 \in A, w_2 \in B \}$$

▶ Union:

$$A \cup B = \{w | w \in A \text{ or } w \in B\}$$

Concatenation:

$$A \circ B = \{ w = w_1 w_2 | w_1 \in A, w_2 \in B \}$$

w can be split into two substrings; the first substring is in A, the second substring is in B

▶ Union:

$$A \cup B = \{w | w \in A \text{ or } w \in B\}$$

Concatenation:

$$A \circ B = \{ w = w_1 w_2 | w_1 \in A, w_2 \in B \}$$

- w can be split into two substrings; the first substring is in A, the second substring is in B
- ► (Kleene) Star:

$$\dot{A}^* = \{\epsilon\} \cup \{w = w_1 w_2 \dots w_n | w_i \in A\}$$

▶ Union:

$$A \cup B = \{w | w \in A \text{ or } w \in B\}$$

Concatenation:

$$A \circ B = \{ w = w_1 w_2 | w_1 \in A, w_2 \in B \}$$

- w can be split into two substrings; the first substring is in A, the second substring is in B
- (Kleene) Star:

$$A^* = \{\epsilon\} \cup \{w = w_1 w_2 \dots w_n | w_i \in A\}$$

w can be split into n substrings; each substring is in A

▶ Union:

$$A \cup B = \{w | w \in A \text{ or } w \in B\}$$

Concatenation:

$$A \circ B = \{ w = w_1 w_2 | w_1 \in A, w_2 \in B \}$$

- w can be split into two substrings; the first substring is in A, the second substring is in B
- (Kleene) Star:

$$A^* = \{\epsilon\} \cup \{w = w_1 w_2 \dots w_n | w_i \in A\}$$

- w can be split into n substrings; each substring is in A
- 0 or more "copies" of A

▶ Union:

$$A \cup B = \{w | w \in A \text{ or } w \in B\}$$

Concatenation:

$$A \circ B = \{ w = w_1 w_2 | w_1 \in A, w_2 \in B \}$$

w can be split into two substrings; the first substring is in A, the second substring is in B

(Kleene) Star:

$$A^* = \{\epsilon\} \cup \{w = w_1 w_2 \dots w_n | w_i \in A\}$$

- w can be split into n substrings; each substring is in A
- ▶ 0 or more "copies" of A
- Note that A^* always includes empty string ϵ

Union Operation

- Let $\Sigma = \{a, b\}$. Let $A = \{w | w \text{ has an even number of a's} \}$ Let $B = \{w | w \text{ ends with b} \}$ Which of the following strings are in $A \cup B$?
- A) aaaaaa
- **B)** baaaab
- **C)** ab
- **D)** aabaaba

Union Operation

Let $\Sigma = \{a, b\}$. Let $A = \{w | w \text{ has an even number of a's} \}$ Let $B = \{w | w \text{ ends with b} \}$

Which of the following strings are in $A \cup B$?

- **A)** aaaaaa √
- **B)** baaaab √
- **C)** ab √
- **D)** aabaaba

```
Let \Sigma = \{a, b\}.

Let A = \{w | w \text{ has an even number of a's} \}

Let B = \{w | w \text{ ends with b} \}

Which of the following strings are in A \circ B?
```

- A) aaab
- B) aabaa
- C) bba
- **D)** bbbaaaa

- Let $\Sigma = \{a, b\}$. Let $A = \{w | w \text{ has an even number of a's} \}$ Let $B = \{w | w \text{ ends with b} \}$ Which of the following strings are in $A \circ B$?
- **A)** aa|ab √
- B) aabaa
- C) bba
- **D)** bbbaaaa

```
Let \Sigma = \{a, b\}.

Let A = \{w | w \text{ has an even number of a's} \}

Let B = \{w | w \text{ ends with b} \}

Which of the following strings are in B \circ A?
```

- A) aaab
- B) aabaa
- C) bba
- **D)** bbbaaaa

- Let $\Sigma = \{a, b\}$. Let $A = \{w | w \text{ has an even number of a's} \}$ Let $B = \{w | w \text{ ends with b} \}$ Which of the following strings are in $B \circ A$?
- **A)** aaab| ✓
- **B)** aab|aa ✓
- C) bba
- **D)** bbb|aaaa√

Kleene star operation

```
Let \Sigma = \{a, b\}.
Let A = \{w | w \text{ has an even number of a's} \}
Let B = \{w | w \text{ ends with b}\}
Which of the following strings are in A^*?
```

- A) ϵ
- **B)** aaaababab
- C) aabaaa

- **D)** bba
- **E)** bbbaaaa

Kleene star operation

Let $\Sigma = \{a, b\}$. Let $A = \{w | w \text{ has an even number of a's} \}$ Let $B = \{w | w \text{ ends with b} \}$ Which of the following strings are in A^* ?

A)
$$\epsilon \checkmark$$

B) aaaa|babab| ✓

D) bba

E) bbb|aaaa ✓

C) aabaaa

Kleene star operation

```
Let \Sigma = \{a, b\}.

Let A = \{w | w \text{ has an even number of a's} \}

Let B = \{w | w \text{ ends with b} \}

Which of the following strings are in B^*?
```

- A) ϵ
- B) aaaababab
- **B)** aaaababab
- C) aabaaa

- **D)** bba
- **E)** bbbaaaa

Kleene star operation

Let $\Sigma = \{a, b\}$. Let $A = \{w | w \text{ has an even number of a's} \}$ Let $B = \{w | w \text{ ends with b} \}$ Which of the following strings are in B^* ?

A)
$$\epsilon \checkmark$$

B) aaaab|ab|ab| ✓

D) bba

E) bbbaaaa

C) aabaaa

Proposition: Regular languages are closed under union

▶ This means that if L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular

- ▶ This means that if L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular
- ▶ What do we know about L_1 and L_2 ?

- ▶ This means that if L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular
- ▶ What do we know about L_1 and L_2 ?
 - There exist DFAs D_1 , D_2 that recognizes L_1 and L_2 , respectively

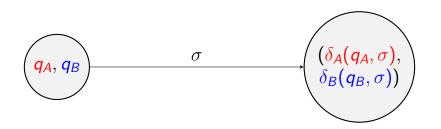
- ▶ This means that if L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular
- ▶ What do we know about L_1 and L_2 ?
 - ► There exist DFAs D_1 , D_2 that recognizes L_1 and L_2 , respectively
- ▶ What do we want to show for $L_1 \cup L_2$?

- ▶ This means that if L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular
- ▶ What do we know about L_1 and L_2 ?
 - ► There exist DFAs D_1 , D_2 that recognizes L_1 and L_2 , respectively
- ▶ What do we want to show for $L_1 \cup L_2$?
 - ▶ Want to show that there is a DFA D_3 that recognizes $L_1 \cup L_2$

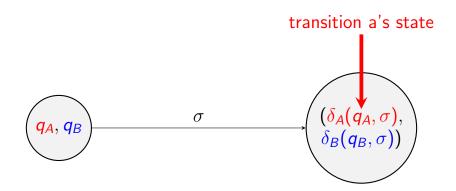
▶ **Proof idea:** Using D_1 and D_2 , we will construct a DFA that runs both machines simultaneously and accepts if either machine accepts.

- ▶ **Proof idea:** Using D_1 and D_2 , we will construct a DFA that runs both machines simultaneously and accepts if either machine accepts.
- ► **Technique:** Run two DFAs *in parallel* using the cartesian product construction

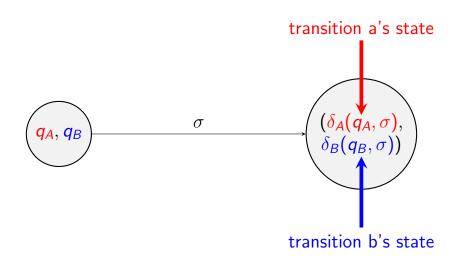
Union idea



Union idea



Union idea



7 / 47

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

$$ightharpoonup Q = Q_A \times Q_B$$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $ightharpoonup Q = Q_A \times Q_B$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $ightharpoonup Q = Q_A \times Q_B$
- $\delta((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $ightharpoonup Q = Q_A \times Q_B$
- $\delta((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))$
- $\blacktriangleright F = \{(q_A, q_B) \in Q | q_A \in F_A \text{ or } q_B \in F_B\}$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

$$ightharpoonup Q = Q_A \times Q_B$$

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- $ightharpoonup Q = Q_A \times Q_B$
- Each state is a combination of 2 elements:

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- $ightharpoonup Q = Q_A \times Q_B$
- Each state is a combination of 2 elements:
 - ightharpoonup A state $q_A \in Q_A$

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- $ightharpoonup Q = Q_A \times Q_B$
- Each state is a combination of 2 elements:
 - ▶ A state $q_A \in Q_A$
 - ▶ A state $q_B \in Q_B$

Union closure - transition function

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

The following DFA $D = (Q, \Sigma, q_s, \delta, F)$ will recognize $A \cup B$

Union closure - transition function

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- $\delta((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))$
- ▶ We transition A to its next state

Union closure - transition function

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- $\delta((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))$
- We transition A to its next state
- We simultaneously transition B to its next state

Union closure - start state

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

Union closure - start state

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- We start out in A's start state

Union closure - start state

Let
$$D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$$
 recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- $q_s = (q_{s_A}, q_{s_B})$
- We start out in A's start state
- We start out in B's start state

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

$$\blacktriangleright \ \ F = \{(q_A, q_B) \in Q | q_A \in F_A \text{ or } q_B \in F_B\}$$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $\blacktriangleright \ F = \{(q_A, q_B) \in Q | q_A \in F_A \text{ or } q_B \in F_B\}$
- Either A's state should be one of its accept states...

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

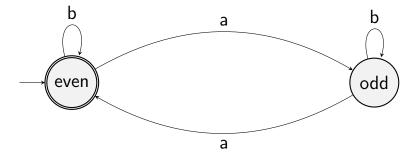
- $ightharpoonup F = \{(q_A, q_B) \in Q | q_A \in F_A \text{ or } q_B \in F_B\}$
- ► Either A's state should be one of its accept states...
- ... or B's state should be one of its accept states

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

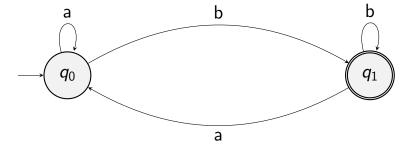
Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

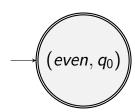
- $\blacktriangleright \ F = \{(q_A, q_B) \in Q | q_A \in F_A \text{ or } q_B \in F_B\}$
- ► Either A's state should be one of its accept states...
- ... or B's state should be one of its accept states
- (or perhaps both!)

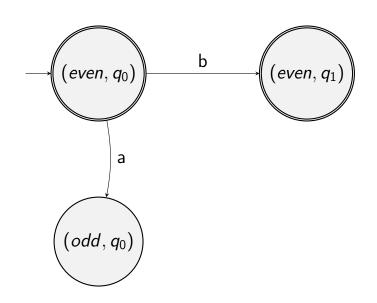
DFA for $A = \{w|w \text{ has an even number of a's}\}$

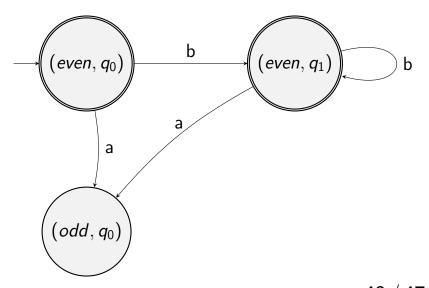


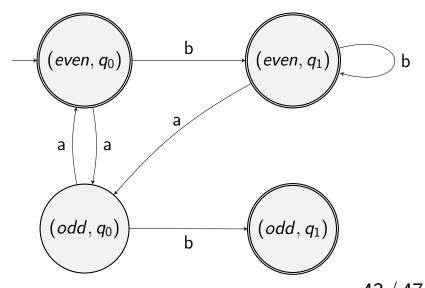
DFA for $B = \{w | w \text{ ends with b}\}$



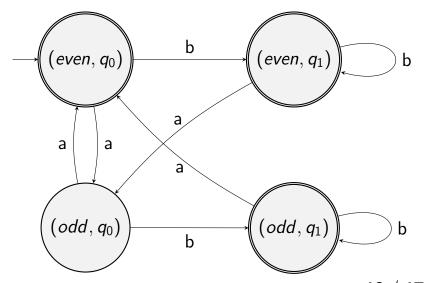








3 / 47



3 / 47

►
$$L_1 \cap L_2 = \{w | w \in L_1, w \in L_2\}$$

- ► $L_1 \cap L_2 = \{w | w \in L_1, w \in L_2\}$
- Q: How do we prove closure under intersection?

- ► $L_1 \cap L_2 = \{w | w \in L_1, w \in L_2\}$
- Q: How do we prove closure under intersection?
 - A: show that if L_1 and L_2 are regular, then $L_1 \cap L_2$ is regular

- ► $L_1 \cap L_2 = \{w | w \in L_1, w \in L_2\}$
- Q: How do we prove closure under intersection?
 - A: show that if L_1 and L_2 are regular, then $L_1 \cap L_2$ is regular
- Q: What technique do we use to do this?

- ► $L_1 \cap L_2 = \{w | w \in L_1, w \in L_2\}$
- Q: How do we prove closure under intersection?
 - A: show that if L_1 and L_2 are regular, then $L_1 \cap L_2$ is regular
- Q: What technique do we use to do this?
 - ► **Technique 1:** Run the two machines in parallel using the Cartesian product construction

- ► $L_1 \cap L_2 = \{w | w \in L_1, w \in L_2\}$
- Q: How do we prove closure under intersection?
 - A: show that if L_1 and L_2 are regular, then $L_1 \cap L_2$ is regular
- Q: What technique do we use to do this?
 - ► **Technique 1:** Run the two machines in parallel using the Cartesian product construction
 - ► **Technique 2:** Express intersection in terms of other operations that we know regular languages are closed under

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

$$ightharpoonup Q = Q_A \times Q_B$$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let $D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$ recognize B

- $ightharpoonup Q = Q_A \times Q_B$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- $ightharpoonup Q = Q_A \times Q_B$
- $\delta((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- $ightharpoonup Q = Q_A \times Q_B$
- $\delta((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))$
- $q_s = (q_{s_A}, q_{s_B})$
- ightharpoonup $F = F_A \times F_B$

Let $D_A = (Q_A, \Sigma, q_{s_A}, \delta_A, F_A)$ recognize A

Let
$$D_B = (Q_B, \Sigma, q_{s_B}, \delta_B, F_B)$$
 recognize B

- $ightharpoonup Q = Q_A \times Q_B$
- $\delta((q_A, q_B), \sigma) = (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma))$
- $q_s = (q_{s_A}, q_{s_B})$
- ightharpoonup $F = F_A \times F_B$
 - Need an accept state for A and for B

► Technique: Express intersection in terms of other operations that we know regular languages are closed under

- ► Technique: Express intersection in terms of other operations that we know regular languages are closed under
- ▶ $L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$ (De Morgan's laws)

- ► Technique: Express intersection in terms of other operations that we know regular languages are closed under
- $ightharpoonup L_1 \cap L_2 = (L_1^c \cup L_2^c)^c ext{ (De Morgan's laws)}$
- ▶ Regular languages are closed under complement, so L_1^c and L_2^c are both regular

- ► Technique: Express intersection in terms of other operations that we know regular languages are closed under
- $ightharpoonup L_1 \cap L_2 = (L_1^c \cup L_2^c)^c ext{ (De Morgan's laws)}$
- Regular languages are closed under complement, so L_1^c and L_2^c are both regular
- Regular languages are closed under union, so $(L_1^c \cup L_2^c)$ is regular

- ► Technique: Express intersection in terms of other operations that we know regular languages are closed under
- $ightharpoonup L_1 \cap L_2 = (L_1^c \cup L_2^c)^c ext{ (De Morgan's laws)}$
- Regular languages are closed under complement, so L_1^c and L_2^c are both regular
- ▶ Regular languages are closed under union, so $(L_1^c \cup L_2^c)$ is regular
- ▶ Regular languages are closed under complement, so $(L_1^c \cup L_2^c)^c$ is regular

- ► Technique: Express intersection in terms of other operations that we know regular languages are closed under
- $ightharpoonup L_1 \cap L_2 = (L_1^c \cup L_2^c)^c ext{ (De Morgan's laws)}$
- ▶ Regular languages are closed under complement, so L_1^c and L_2^c are both regular
- Regular languages are closed under union, so $(L_1^c \cup L_2^c)$ is regular
- ▶ Regular languages are closed under complement, so $(L_1^c \cup L_2^c)^c$ is regular
- ▶ Thus, $L_1 \cap L_2$ is regular!

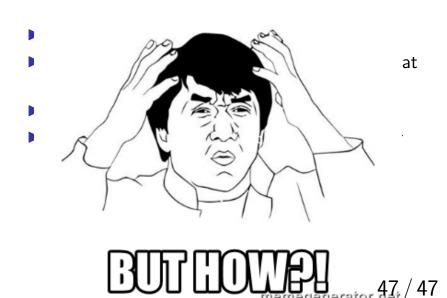
▶ Let D_1 and D_2 recognize L_1 and L_2

- ▶ Let D_1 and D_2 recognize L_1 and L_2
- ▶ We need to combine them into a machine that recognizes $L_1 \circ L_2$

- ▶ Let D_1 and D_2 recognize L_1 and L_2
- ▶ We need to combine them into a machine that recognizes $L_1 \circ L_2$
- We can't run the machines in parallel

- ▶ Let D_1 and D_2 recognize L_1 and L_2
- ▶ We need to combine them into a machine that recognizes $L_1 \circ L_2$
- We can't run the machines in parallel
- We need to run them in sequence one after the other

Clos



- ▶ Let D_1 and D_2 recognize L_1 and L_2
- ▶ We need to combine them into a machine that recognizes $L_1 \circ L_2$
- We can't run the machines in parallel
- We need to run them in sequence one after the other

Technique: nondeterminism!