Theory of Computation Mapping Reducibility

Arjun Chandrasekhar

- When we defined 'reducibility', we gave an informal definition
- We will give a mathematically precise definition of what it means for one problem to be reducible to another

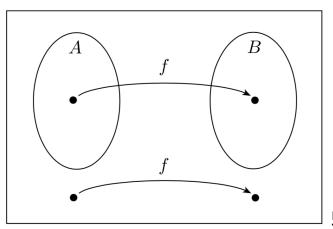
Computable Function

- So far we have considered machines that take in an input string and output ACCEPT or REJECT
- We can also construct machines that take an input and produce an output
- Let f : Σ^{*} → Σ^{*} be a function that takes a string as input and produces another string as output
- We say f is a computable function if some Turing machine M computes f
 - For every input w, M halts and leaves f(w) on the tape, nothing else

- Let $A, B \subseteq \Sigma^*$ be formal languages
- Suppose $f : \Sigma^* \to \Sigma^*$ is a computable function, and $w \in A \Leftrightarrow f(w) \in B$
- We say A is **mapping reducible** to B
 - We denote this $A \leq_M B$
 - We say f is a **reduction** from A to B

Mapping Reducibility "YES maps to YES"

"NO maps to NO"



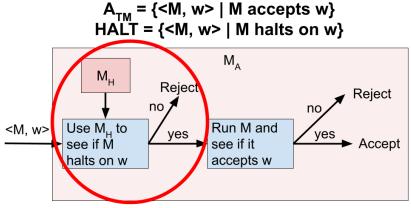
Mapping vs. Turing Reducibility

Turing Reducibility:

- ► $A \leq_T B$
- *M_A* can call *M_B* as a subroutine any number of times
- M_A can call M_B at any point in its computation Mapping Reducibility
 - ► $A \leq_M B$
 - M_A can use M_B as a subroutine exactly once
 - *M_A* can only call *M_B* at the very last step in the computation

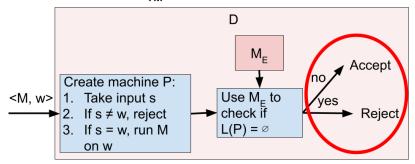
6

Non-Mapping Reductions



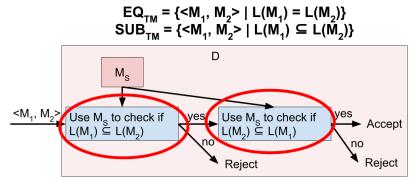
 $\rm M_{\rm H}$ subroutine is used prior to the last step

Non-Mapping Reductions



"Yes maps to No" "No maps to Yes"

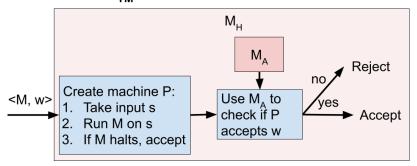
Non-Mapping Reductions



M_s subroutine is used more than once

 $HALT \leq_{M} A_{TM}$

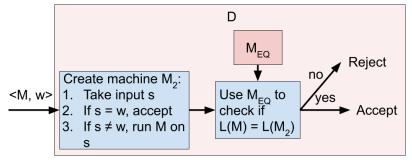
HALT = {<M, w> | M halts on w} A_{TM} = {<M, w> | M accepts w}



Reduction: $f(<M, w>) \mapsto <P, w>$ <M, w> ∈ HALT ⇔ $f(<M, w>) ∈ A_{TM}$

 $A_{TM} \leq_{\mathcal{M}} EQ_{TM}$

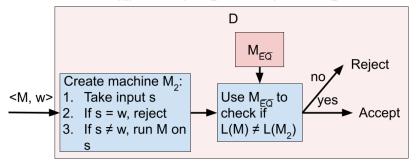
$$\begin{array}{l} \mathsf{A}_{\mathsf{TM}} = \{ <\mathsf{M}, \, \mathsf{w} > \mid \mathsf{M} \text{ accepts } \mathsf{w} \} \\ \mathsf{EQ}_{\mathsf{TM}} = \{ <\mathsf{M}_1, \, \mathsf{M}_2 > \mid \mathsf{L}(\mathsf{M}_1) = \mathsf{L}(\mathsf{M}_2) \} \end{array}$$



Reduction: $f(<M, w>) \mapsto <M, M_2>$ <M, w> ∈ A_{TM} ⇔ $f(<M, w>) ∈ EQ_{TM}$

 $A_{TM} \leq_{\mathcal{M}} \overline{EQ_{TM}}$

$$\begin{array}{l} \mathsf{A}_{\mathsf{TM}} = \{ <\mathsf{M}, \, \mathsf{w} > \mid \mathsf{M} \text{ accepts } \mathsf{w} \} \\ \overline{\mathsf{E}} \overline{\mathsf{Q}}_{\mathsf{TM}} = \{ <\mathsf{M}_1, \, \mathsf{M}_2 > \mid \mathsf{L}(\mathsf{M}_1) \neq \mathsf{L}(\mathsf{M}_2) \} \end{array}$$



Reduction: $f(<M, w>) \mapsto <M, M_2>$ <M, w> ∈ A_{TM} ⇔ $f(<M, w>) ∈ \overline{EQ}_{TM}$

 $12 \, / \, 21$

Theorem: The following four statements are true:

- 1. If $A \leq_M B$ and B is decidable, then A is decidable
- 2. If $A \leq_M B$ and B is recognizable, then A is recognizable
- 3. If $A \leq_M B$ and A is undecidable, then B is undecidable
- 4. If $A \leq_M B$ and A is unrecognizable, then B is unrecognizable

Theorem: If $A \leq_M B$ and B is decidable, then A is decidable.

- There is a computable function f : Σ* → Σ* such that w ∈ A ⇔ f(w) ∈ B
- There is a machine M_B that decides B
- Construct a machine M_A to decide A
 - 1. M_A takes w as input
 - 2. Compute f(w)
 - 3. Run M_B on f(w)
 - 3.1 If M_B accepts f(w), then M_A accepts w
 - 3.2 Otherwise M_A rejects w
- M_A accepts $w \Leftrightarrow M_B$ accepts $f(w) \Leftrightarrow f(w) \in B \Leftrightarrow w \in A$
- f is computable, and M_B is a decider, so M_A
 will always halt. Thus, M_A decides A
 14 / 22

Theorem: If $A \leq_M B$ and B is recognizable, then A is recognizable

- Let M_B recognize B
- Let *f* be the reduction from *A* to *B*
- M_A recognizes A as follows:
 - 1. M_A takes input w
 - 2. Compute f(w)
 - 3. Run M_B on f(w)
 - 3.1 If M_B accepts f(w), M_A accepts w
 - 3.2 If M_B does not accept f(w), M_A will not accept w

15

- M_A accepts $w \Leftrightarrow M_B$ accepts $f(w) \Leftrightarrow f(w) \in B \Leftrightarrow w \in A$
- Thus M_A recognizes A

Theorem: If $A \leq_M B$ and A is undecidable then B is undecidable

- ► AFSOC *B* is decidable
- Then A is decidable
- But A is undecidable! This is a contradiction, and we conclude that B is not decidable.

16

Theorem: If $A \leq_M B$ and A is unrecognizable then B is unrecognizable

- ► AFSOC *B* is recognizable
- ► Then A is recognizable
- But A is unrecognizable! This is a contradiction, and we conclude that B is not recognizable.

Theorem: If $A \leq_M B$ then $\overline{A} \leq_M \overline{B}$

There is a computable function f such that w ∈ A ⇔ f(w) ∈ B
w ∉ A ⇔ f(w) ∉ B
w ∈ Ā ⇔ f(w) ∈ B

Theorem: $\mathrm{EQ}_{\mathrm{TM}}$ is neither recognizable nor co-recognizable

EQ_{TM} is not recognizable

- ▶ $A_{TM} \leq_M \overline{EQ_{TM}}$, therefore $\overline{A_{TM}} \leq_M EQ_{TM}$
- \blacktriangleright $\overline{A_{TM}}$ is not recognizable
- Therefore EQ_{TM} is not recognizable

$\overline{\mathrm{EQ}_{\mathrm{TM}}}$ is not recognizable

▶ $A_{TM} \leq_M EQ_{TM}$, therefore $\overline{A_{TM}} \leq_M \overline{EQ_{TM}}$

- \blacktriangleright $\overline{A_{TM}}$ is not recognizable
- Therefore $\overline{\mathrm{EQ}_{\mathrm{TM}}}$ is not recognizable