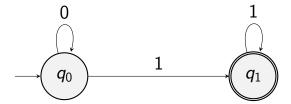
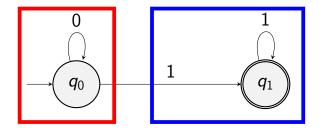
Arjun Chandrasekhar

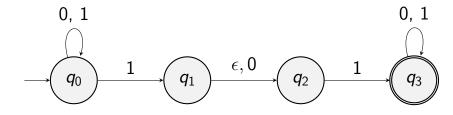
- ➤ A DFA is *deterministic*. For each state/symbol combination, there is exactly one transition defined.
- ➤ An nondeterministic finite automaton (NFA) is like a DFA, except a state/symbol pair may have any number of transitions defined for it (0, 1, 2, ...).
- ightharpoonup Can also have ϵ transitions which let you change states without reading a symbol.

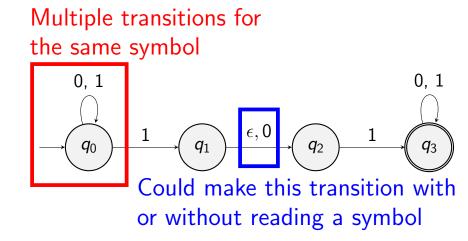


Can only read 0s here



Can only read 1s here



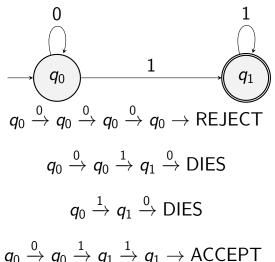


Computation on an NFA

- Start in the start state
- Scan symbols one-by-one
- For each symbol σ scanned:
 - ightharpoonup Go to *one of* the possible arrows with the label σ
 - ▶ If no arrows have the label σ the computation *dies*
 - The NFA can behave in different ways on the same input string!
- At any point the NFA may take an ϵ transition without consuming a character
- ▶ The NFA accepts if after reading all the characters, and taking any desired ϵ transitions, it is in an accept state

Computation on an NFA

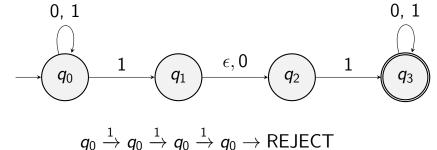
What happens on inputs: 000, 010, 101, 011?



6/41

Computation on an NFA

What happens on input 111?



$$q_0 \stackrel{1}{ o} q_1 \stackrel{1}{ o} \mathsf{DIES}$$

$$q_0 \stackrel{1}{ o} q_0 \stackrel{1}{ o} q_0 \stackrel{1}{ o} q_1 \stackrel{\epsilon}{ o} q_2 o \mathsf{REJECT}$$

 $q_0 \stackrel{1}{
ightarrow} q_1 \stackrel{\epsilon}{
ightarrow} q_2 \stackrel{1}{
ightarrow} q_3 \stackrel{1}{
ightarrow} q_3
ightarrow ext{ACCEPT} \quad ext{7} \, ig/ \, ext{41}$

NFA Formal Definition

Def: A **Nondeterministic finite automate** (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, F)$

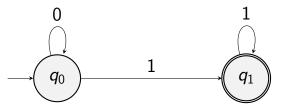
- Q: The set of states in the NFA
- $ightharpoonup \Sigma$ the alphabet of (non- ϵ) characters that the NFA can read
- $ightharpoonup q_s$: the starting state
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q)$ the transition function
 - ▶ **Input:** Current state & next symbol (or ϵ)
 - ► **Output:** *Set* of possible next states (could be empty)
- F the set of accept states

- An NFA can do many different things on the same string
 - ► It may be capable of both accepting and rejecting the same string!
- What does it mean for an NFA to accept a string?
- ▶ Informally, an NFA accepts a string w if there exists a computation path that ends in an accept state
 - Even if every other path rejects and/or dies, just one accepting path is good enough

An NFA accepts a string $w = w_1 w_2 \dots w_n$ if:

- 1. We can re-write w as $y = y_1 y_2 \dots y_n$ where each $y_i \in (\Sigma \cup \epsilon)$ (i.e. insert empty ϵ characters into w) and ...
- 2. There *exists* a sequence of states $q_0q_1 \dots q_n$ such that...
 - 2.1 $q_0 = q_s$ (start in the start state)
 - 2.2 $q_i \in \delta(q_{i-1}, y_i)$ for all i (all transitions are valid)
 - 2.3 $q_n \in F$ (end in an accept state)

Which strings are accepted by this NFA?



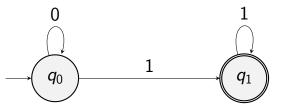
A) ϵ (empty string)

C) 010

B) 1

D) 101

Which strings are accepted by this NFA?

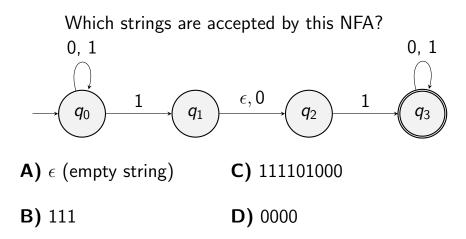


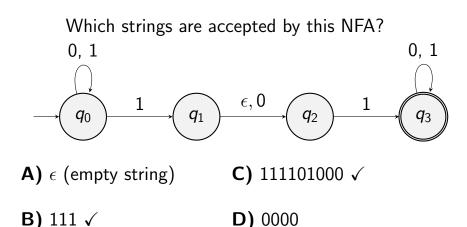
A) ϵ (empty string)

C) 010

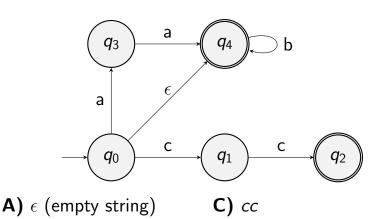
B) 1 √

D) 101





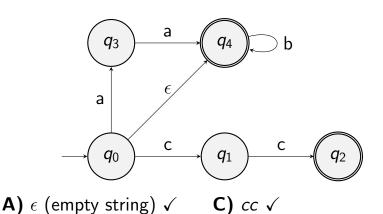
Which strings are accepted by this NFA?



B) abba

D) ccccccccccc

Which strings are accepted by this NFA?

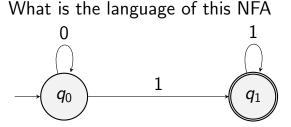


B) abba

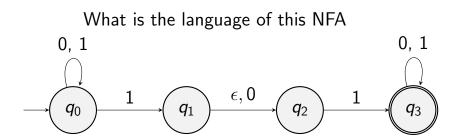
D) ccccccccccc

- Let N be an NFA
- ► The language of N is the set of strings that N accepts i.e.

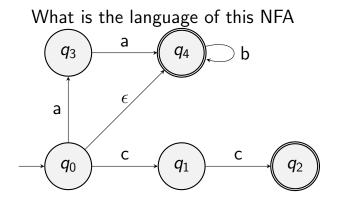
$$L(N) = \{w | N \text{ accepts } w\}$$

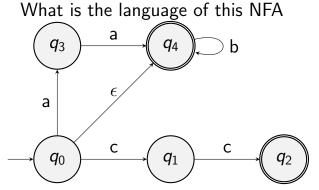


What is the language of this NFA $0 \qquad 1 \qquad q_1$ $L(N) = \{w \mid 0 \text{s precede 1s, at least one 1}\}$









 $L(N) = \{w \mid w \text{ has either zero or two a's followed}$ by any number of b's, $OR w = cc\}$

Nondeterminism

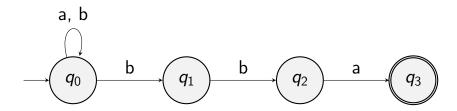
- As said earlier, an NFA can have many possible computation paths
- We can think of nondeterminism in two ways:
 - ► The NFA "guesses" which choice will ultimately lead to an accepting state
 - ► The NFA branches/copies itself for each possible choice.

NFAs vs DFAs

- Are NFAs more powerful than DFAs?
 - ► That is, are there languages that an NFA can recognize, but a DFA cannot?
- As it turns out, no! So why study them?
 - If we want to show a language is regular, It is often easier to describe an NFA than a DFA.
 - ► If we actually want to be able to recognize the language, then we can automate the conversion of an NFA to a DFA.

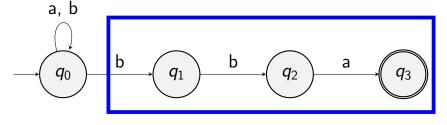
Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ ends with bba}\}$

Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ ends with bba}\}$



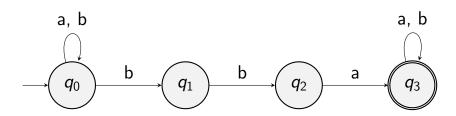
Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ ends with bba}\}$

"Guess" when we've reached the end

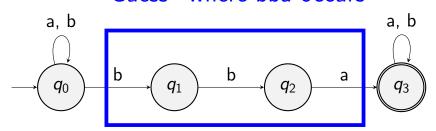


Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ contains bba}\}$

Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ contains bba}\}$



Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ contains bba}\}$ "Guess" where bba occurs



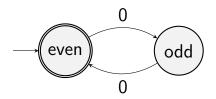
Combining NFAs

Combining NFAs

Let $\Sigma = \{0\}$. Design an NFA to recognize strings with an even number of 0s

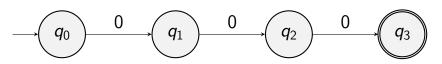
Combining NFAs

Let $\Sigma = \{0\}$. Design an NFA to recognize strings with an even number of 0s



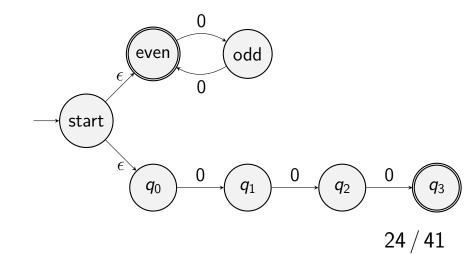
Let $\Sigma=\{0\}.$ Design an NFA to recognize strings with an exactly three 0s

Let $\Sigma = \{0\}$. Design an NFA to recognize strings with an exactly three 0s

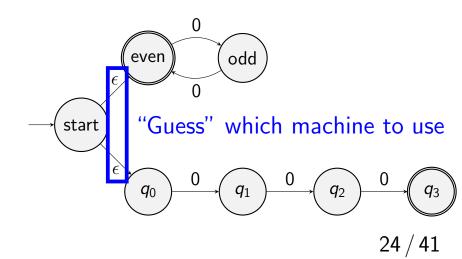


Let $\Sigma = \{0\}$. Design an NFA to recognize strings where the number of 0s is even or exactly 3

Let $\Sigma = \{0\}$. Design an NFA to recognize strings where the number of 0s is even or exactly 3



Let $\Sigma = \{0\}$. Design an NFA to recognize strings where the number of 0s is even or exactly 3



Equivalence of NFAs and DFAs

Theorem: A language is recognized by an NFA if and only if it is recognized by a DFA

- ▶ Proof idea: We will show that every NFA N can be converted to an equivalent DFA D that recognizes all the same strings
- ► **Technique:** Simulate nondeterminism using the power set construction
 - Every state in the D will correspond to a subset of states in N, i.e. set of possible states where N could be at some point in the computation
 - Every transition in D will correspond to all of the possible states N could reach from any of the states in the previous step
 - Accept if the NFA could be in an accept state

Equivalence between NFAs and DFAs

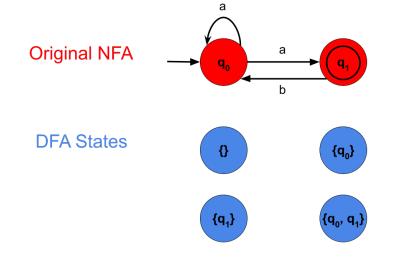
- (\Rightarrow) If a language L is recognized by a DFA, then there exists an NFA to recognize it
 - ► Suppose there is a DFA *D* that recognizes *L*
 - ► Then *D* is an NFA!
 - It's an NFA that simply chooses not to have any nondeterminism, missing transitions, or ϵ transition
 - ▶ Thus, there exists an NFA that recognizes *L*

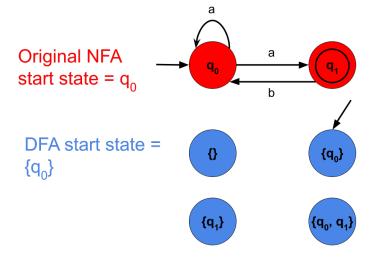
Equivalence between NFAs and DFAs

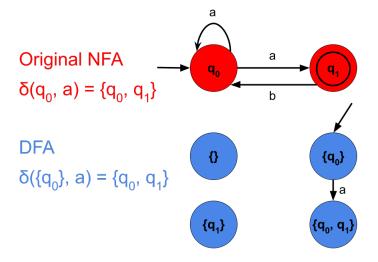
 (\Leftarrow) If a language L is recognized by an NFA, then there exists a DFA to recognize it

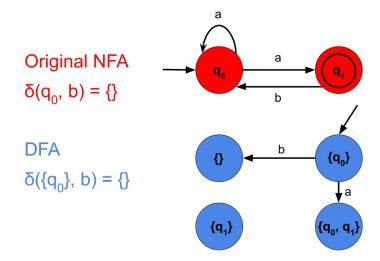
- Suppose there is an NFA $N = (Q_N, \Sigma, q_{s_N}, \delta_N, F_N)$ that recognizes L
- \blacktriangleright For now, assume N has no ϵ transitions
- We will construct a DFA $D = (Q_D, \Sigma, q_{S_D}, \delta_D, F_D)$ to recognize L
 - $ightharpoonup Q_D = \mathcal{P}(Q_N)$

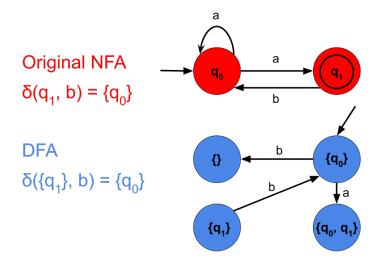
 - $\qquad \qquad q_{S_D} = \left\{q_{s_N}\right\}^{r \in R}$
 - ► $F_D = \{R \subseteq Q_N | R \cap F_N \neq \emptyset\}$ (i.e., all subsets that include at least one accept state)

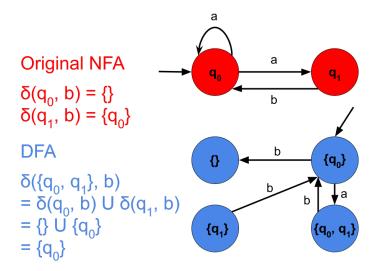


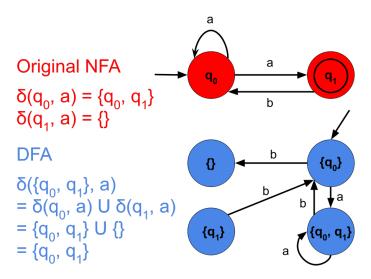


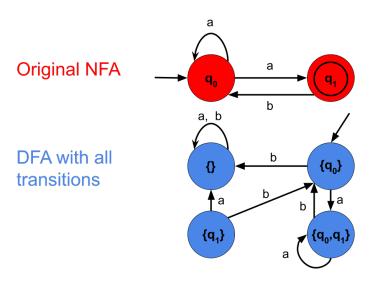


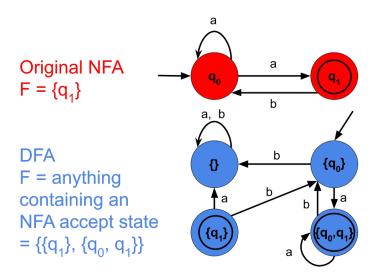


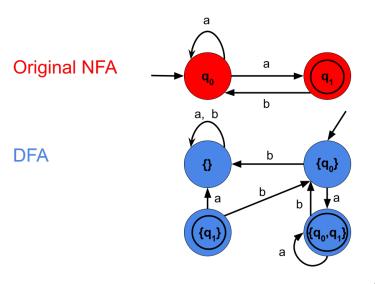








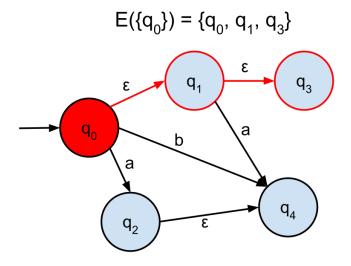




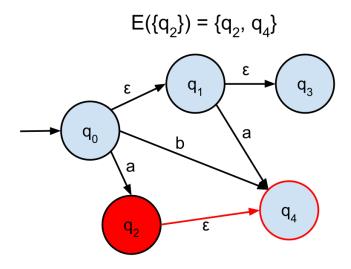
Epsilon Closure

- ▶ Let $N = (Q, \Sigma, q_s, \delta, F)$ be an NFA
- ▶ Let $S \subseteq Q$ be a set of states
- ▶ **Def:** the **epsilon closure** E(S) is the set of states that can be reached from S using only ϵ arrows
 - ► This includes members of *S*

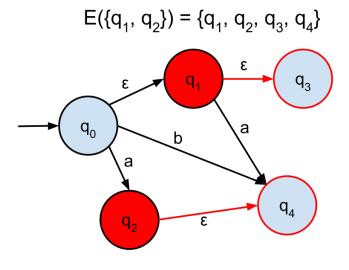
Epsilon Closure Example



Epsilon Closure Example



Epsilon Closure Example



How do we extend our conversion to account for ϵ transitions?

- $ightharpoonup Q = \mathcal{P}(Q_N)$

- $\blacktriangleright F_D = \{R \subseteq Q_N | R \cap F_N \neq \emptyset\}$

How do we extend our conversion to account for ϵ transitions?

- $ightharpoonup Q = \mathcal{P}(Q_N)$

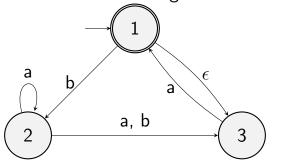
- $F_D = \{ R \subseteq Q_N | R \cap F_N \neq \emptyset \}$

How do we extend our conversion to account for ϵ transitions?

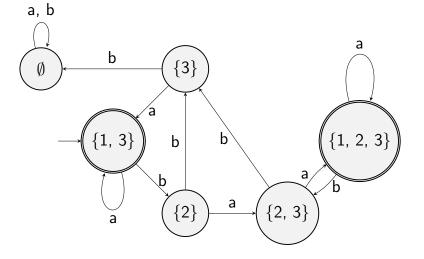
- $ightharpoonup Q = \mathcal{P}(Q_N)$
- $\blacktriangleright \ \delta_D(R,\sigma) = E\left(\bigcup_{r\in R} \delta_N(r,\sigma)\right)$
- $P q_{S_D} = E(\{q_{s_N}\})$
- $F_D = \{ R \subseteq Q_N | R \cap F_N \neq \emptyset \}$

NFA to DFA Conversion Example

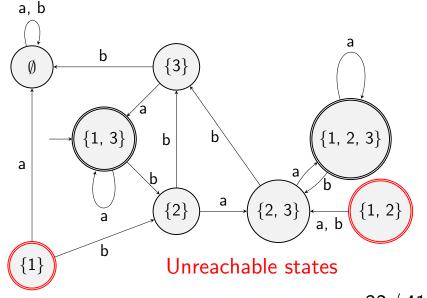
Let's convert the following NFA to a DFA



NFA to DFA Conversion Example



NFA to DFA Conversion Example



NFAs and regular languages

- Recall that the regular languages are the languages recognized by DFAs
- We have proven that DFAs and NFAs are equivalent

NFAs and regular languages

NFAs and regular languages

- Recall that the regular languages are the languages recognized by DFAs
- We have proven that DFAs and NFAs are equivalent
- Corollary: a language is regular if and only if it is recognized by an NFA
- ► It will often be more convenient use NFAs when we want to show that a language is regular!

Regular operations

Recall the regular operations:

▶ Union:

$$A \cup B = \{w | w \in A \text{ or } w \in B\}$$

Concatenation:

$$A \circ B = \{ w = w_1 w_2 | w_1 \in A, w_2 \in B \}$$

(Kleene) Star:

$$A^* = \{\epsilon\} \cup \{w = w_1 w_2 \dots w_n | w_i \in A\}$$

Kleene's Theorem

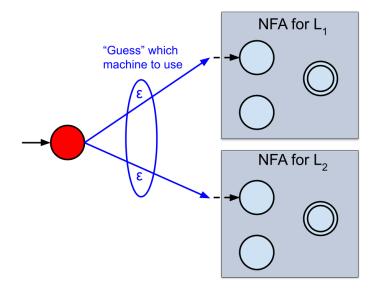
Theorem: The regular languages are closed under the regular operations

- ▶ Want to show that if L_1 and L_2 are regular, then $L_1 \cup L_2$, $L_1 \circ L_2$, and L_1^* are regular
- With DFAs, it was messy
- With NFAs, this will be easy!
- **Proof idea:** We will combine the DFAs for L_1 and L_2 into an NFA that simulates the regular operation.
 - ▶ For Kleene star we only modify the DFA for L_1

Closure under union

- ▶ Let N_1 recognize L_1 and let N_2 recognize L_2
- Start with the two smaller NFAs
- Add a new start state
- lacktriangle Add ϵ transitions to the two original start states

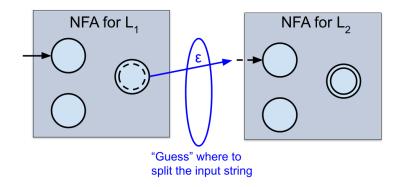
Closure under union



Closure under concatenation

- ▶ Let N_1 recognize L_1 and let N_2 recognize L_2
- Start with the two smaller NFAs
- Add an ϵ transition between N_1 's accept state(s) and N_2 's start state
- Accept states in N_1 are no longer accept states (we have to accept in N_2)

Closure under concatenation



Closure under Kleene star

- ightharpoonup Let N_1 recognize L_1
- Start with the smaller NFA
- ▶ Add ϵ transitions from each accept state back to the start state
- Add an new start state with an ϵ transition to the original start state
 - This new start state will also be an accept state

Closure under Kleene star

