Arjun Chandrasekhar

 $1 \, / \, 41$

 A DFA is *deterministic*. For each state/symbol combination, there is exactly one transition defined.

- A DFA is *deterministic*. For each state/symbol combination, there is exactly one transition defined.
- An nondeterministic finite automaton (NFA) is like a DFA, except a state/symbol pair may have any number of transitions defined for it (0, 1, 2, ...).

- A DFA is *deterministic*. For each state/symbol combination, there is exactly one transition defined.
- An nondeterministic finite automaton (NFA) is like a DFA, except a state/symbol pair may have any number of transitions defined for it (0, 1, 2, ...).
- Can also have e transitions which let you change states without reading a symbol.

Can only read 0s here

Can only read 0s here

Can only read 1s here

Multiple transitions for the same symbol

Multiple transitions for the same symbol

Start in the start state

- Start in the start state
- Scan symbols one-by-one

5

- Start in the start state
- Scan symbols one-by-one
- For each symbol σ scanned:

5

- Start in the start state
- Scan symbols one-by-one
- For each symbol σ scanned:
 - Go to one of the possible arrows with the label σ

- Start in the start state
- Scan symbols one-by-one
- For each symbol σ scanned:
 - \blacktriangleright Go to one of the possible arrows with the label σ
 - \blacktriangleright If no arrows have the label σ the computation dies

- Start in the start state
- Scan symbols one-by-one
- For each symbol σ scanned:
 - Go to one of the possible arrows with the label σ
 - \blacktriangleright If no arrows have the label σ the computation dies
 - The NFA can behave in different ways on the same input string!

- Start in the start state
- Scan symbols one-by-one
- For each symbol σ scanned:
 - Go to one of the possible arrows with the label σ
 - If no arrows have the label σ the computation dies
 - The NFA can behave in different ways on the same input string!
- At any point the NFA may take an e transition without consuming a character

- Start in the start state
- Scan symbols one-by-one
- For each symbol σ scanned:
 - Go to one of the possible arrows with the label σ
 - If no arrows have the label σ the computation dies
 - The NFA can behave in different ways on the same input string!
- At any point the NFA may take an e transition without consuming a character
- The NFA accepts if after reading all the characters, and taking any desired e transitions, it is in an accept state

What happens on inputs: 000, 010, 101, 011?

What happens on inputs: 000, 010, 101, 011?

What happens on inputs: 000, 010, 101, 011?

What happens on inputs: 000, 010, 101, 011?

What happens on inputs: 000, 010, 101, 011?

What happens on input 111?

What happens on input 111?

$$q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_0
ightarrow \mathsf{REJECT}$$

What happens on input 111?

$$q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_0 \rightarrow \mathsf{REJECT}$$

$$q_0 \stackrel{ ext{-}}{ o} q_1 \stackrel{ ext{-}}{ o} \mathsf{DIES}$$

What happens on input 111?

$$q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_0
ightarrow \mathsf{REJECT}$$

1

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} \mathsf{DIES}$$

 $q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_1 \xrightarrow{\epsilon} q_2 \to \mathsf{REJECT}$

1

What happens on input 111?

$$q_0 \xrightarrow{1} q_1 \xrightarrow{1} \mathsf{DIES}$$

 $q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_0 \xrightarrow{1} q_1 \xrightarrow{\epsilon} q_2 o \mathsf{REJECT}$

 $q_{0} \xrightarrow{1} q_{1} \xrightarrow{\epsilon} q_{2} \xrightarrow{1} q_{3} \xrightarrow{1} q_{3}
ightarrow \mathsf{ACCEPT} \quad 7 \ / \ 41$

Def: A Nondeterministic finite automate (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, F)$

Def: A Nondeterministic finite automate (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, F)$

Q: The set of states in the NFA

- **Def:** A Nondeterministic finite automate (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, F)$
 - ▶ *Q*: The set of states in the NFA
 - Σ the alphabet of (non-ε) characters that the NFA can read

- **Def:** A Nondeterministic finite automate (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, F)$
 - ▶ *Q*: The set of states in the NFA
 - Σ the alphabet of (non-ε) characters that the NFA can read
 - q_s : the starting state

- **Def:** A Nondeterministic finite automate (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, F)$
 - ▶ *Q*: The set of states in the NFA
 - Σ the alphabet of (non-ε) characters that the NFA can read
 - \triangleright q_s : the starting state
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q)$ the transition function
NFA Formal Definition

- **Def:** A Nondeterministic finite automate (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, F)$
 - ▶ *Q*: The set of states in the NFA
 - Σ the alphabet of (non-ε) characters that the NFA can read
 - ▶ *q_s*: the starting state
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q)$ the transition function

Input: Current state & next symbol (or ϵ)

NFA Formal Definition

- **Def:** A Nondeterministic finite automate (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, F)$
 - ▶ *Q*: The set of states in the NFA
 - Σ the alphabet of (non-ε) characters that the NFA can read
 - ▶ *q_s*: the starting state
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q)$ the transition function
 - Input: Current state & next symbol (or ϵ)
 - Output: Set of possible next states (could be empty)

NFA Formal Definition

- **Def:** A Nondeterministic finite automate (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_s, F)$
 - ▶ *Q*: The set of states in the NFA
 - Σ the alphabet of (non-ε) characters that the NFA can read
 - ▶ *q_s*: the starting state
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q)$ the transition function
 - Input: Current state & next symbol (or ϵ)
 - Output: Set of possible next states (could be empty)
 - ► *F* the set of accept states

 An NFA can do many different things on the same string

- An NFA can do many different things on the same string
 - It may be capable of both accepting and rejecting the same string!

- An NFA can do many different things on the same string
 - It may be capable of both accepting and rejecting the same string!
- What does it mean for an NFA to accept a string?

- An NFA can do many different things on the same string
 - It may be capable of both accepting and rejecting the same string!
- What does it mean for an NFA to accept a string?
- Informally, an NFA accepts a string w if there exists a computation path that ends in an accept state

- An NFA can do many different things on the same string
 - It may be capable of both accepting and rejecting the same string!
- What does it mean for an NFA to accept a string?
- Informally, an NFA accepts a string w if there exists a computation path that ends in an accept state
 - Even if every other path rejects and/or dies, just one accepting path is good enough

$10 \, / \, 41$

An NFA accepts a string $w = w_1 w_2 \dots w_n$ if:

 $10 \, / \, 41$

An NFA accepts a string $w = w_1 w_2 \dots w_n$ if:

1. We can re-write w as $y = y_1 y_2 \dots y_n$ where each $y_i \in (\Sigma \cup \epsilon)$ (i.e. insert empty ϵ characters into w) and ...

An NFA accepts a string $w = w_1 w_2 \dots w_n$ if:

- 1. We can re-write w as $y = y_1 y_2 \dots y_n$ where each $y_i \in (\Sigma \cup \epsilon)$ (i.e. insert empty ϵ characters into w) and ...
- 2. There *exists* a sequence of states $q_0q_1 \dots q_n$ such that...

An NFA accepts a string $w = w_1 w_2 \dots w_n$ if:

- 1. We can re-write w as $y = y_1y_2...y_n$ where each $y_i \in (\Sigma \cup \epsilon)$ (i.e. insert empty ϵ characters into w) and ...
- 2. There *exists* a sequence of states $q_0q_1 \dots q_n$ such that...

2.1
$$q_0 = q_s$$
 (start in the start state)

$$10 \, / \, 41$$

An NFA accepts a string $w = w_1 w_2 \dots w_n$ if:

- 1. We can re-write w as $y = y_1y_2...y_n$ where each $y_i \in (\Sigma \cup \epsilon)$ (i.e. insert empty ϵ characters into w) and ...
- 2. There *exists* a sequence of states $q_0q_1 \dots q_n$ such that...
 - 2.1 $q_0 = q_s$ (start in the start state)
 - 2.2 $q_i \in \delta(q_{i-1}, y_i)$ for all *i* (all transitions are valid)

An NFA accepts a string $w = w_1 w_2 \dots w_n$ if:

- 1. We can re-write w as $y = y_1y_2...y_n$ where each $y_i \in (\Sigma \cup \epsilon)$ (i.e. insert empty ϵ characters into w) and ...
- 2. There *exists* a sequence of states $q_0q_1 \dots q_n$ such that...

2.1
$$q_0 = q_s$$
 (start in the start state)

- 2.2 $q_i \in \delta(q_{i-1}, y_i)$ for all *i* (all transitions are valid)
- 2.3 $q_n \in F$ (end in an accept state)

Which strings are accepted by this NFA?

A) € (empty string)
B) 1
C) 010
D) 101

 $11 \, / \, 41$

Which strings are accepted by this NFA?

A) ε (empty string)
B) 1 √
C) 010
D) 101

 $11 \, / \, 41$

Which strings are accepted by this NFA?

A) ϵ (empty string) **C)** 111101000

B) 111 **D)** 0000

Which strings are accepted by this NFA?

A) ϵ (empty string) **C)** 111101000 \checkmark

B) 111 ✓ **D)** 0000

Which strings are accepted by this NFA?

Which strings are accepted by this NFA?

A) ϵ (empty string) \checkmark C) $cc \checkmark$

B) abba

D) cccccccccccc

Let N be an NFA

- Let N be an NFA
- The language of N is the set of strings that N accepts i.e.

$$L(N) = \{w | N \text{ accepts } w\}$$

 $15 \, / \, 41$

 $18 \, / \, 41$

 As said earlier, an NFA can have many possible computation paths

- As said earlier, an NFA can have many possible computation paths
- We can think of nondeterminism in two ways:

- As said earlier, an NFA can have many possible computation paths
- We can think of nondeterminism in two ways:
 - The NFA "guesses" which choice will ultimately lead to an accepting state

- As said earlier, an NFA can have many possible computation paths
- We can think of nondeterminism in two ways:
 - The NFA "guesses" which choice will ultimately lead to an accepting state
 - The NFA branches/copies itself for each possible choice.

18
Are NFAs more powerful than DFAs?

Are NFAs more powerful than DFAs?

That is, are there languages that an NFA can recognize, but a DFA cannot?

Are NFAs more powerful than DFAs?

That is, are there languages that an NFA can recognize, but a DFA cannot?

19

As it turns out, no! So why study them?

Are NFAs more powerful than DFAs?

- That is, are there languages that an NFA can recognize, but a DFA cannot?
- As it turns out, no! So why study them?
 - If we want to show a langauge is regular, It is often easier to describe an NFA than a DFA.

Are NFAs more powerful than DFAs?

That is, are there languages that an NFA can recognize, but a DFA cannot?

As it turns out, no! So why study them?

- If we want to show a langauge is regular, It is often easier to describe an NFA than a DFA.
- If we actually want to be able to recognize the language, then we can automate the conversion of an NFA to a DFA.

19

Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ ends with bba}\}$

Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ ends with bba}\}$

Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ ends with bba}\}$ "Guess" when we've reached the end

Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ contains bba}\}$

$21 \, / \, 41$

Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ contains bba}\}$

Design a 4-state NFA to recognize the following language: $L = \{w \mid w \text{ contains bba}\}$ "Guess" where bba occurs

Let $\Sigma = \{0\}.$ Design an NFA to recognize strings with an even number of 0s

Let $\Sigma = \{0\}$. Design an NFA to recognize strings with an even number of 0s

Let $\Sigma = \{0\}$. Design an NFA to recognize strings with an exactly three 0s

Let $\Sigma = \{0\}$. Design an NFA to recognize strings with an exactly three 0s

$$23 \, / \, 41$$

Let $\Sigma = \{0\}$. Design an NFA to recognize strings where the number of 0s is even or exactly 3

Let $\Sigma = \{0\}$. Design an NFA to recognize strings where the number of 0s is even or exactly 3

Let $\Sigma = \{0\}$. Design an NFA to recognize strings where the number of 0s is even or exactly 3

Let $\Sigma = \{0\}$. Design an NFA to recognize strings where the number of 0s is even or exactly 3

Let $\Sigma = \{0\}$. Design an NFA to recognize strings where the number of 0s is even or exactly 3

$25 \, / \, 41$

Theorem: A language is recognized by an NFA if and only if it is recognized by a DFA

Theorem: A language is recognized by an NFA if and only if it is recognized by a DFA

Proof idea: We will show that every NFA N can be converted to an equivalent DFA D that recognizes all the same strings

Theorem: A language is recognized by an NFA if and only if it is recognized by a DFA

- Proof idea: We will show that every NFA N can be converted to an equivalent DFA D that recognizes all the same strings
- Technique: Simulate nondeterminism using the power set construction

Theorem: A language is recognized by an NFA if and only if it is recognized by a DFA

- Proof idea: We will show that every NFA N can be converted to an equivalent DFA D that recognizes all the same strings
- Technique: Simulate nondeterminism using the power set construction
 - Every state in the D will correspond to a subset of states in N, i.e. set of possible states where N could be at some point in the computation

Theorem: A language is recognized by an NFA if and only if it is recognized by a DFA

- Proof idea: We will show that every NFA N can be converted to an equivalent DFA D that recognizes all the same strings
- Technique: Simulate nondeterminism using the power set construction
 - Every state in the D will correspond to a subset of states in N, i.e. set of possible states where N could be at some point in the computation
 - Every transition in D will correspond to all of the possible states N could reach from any of the states in the previous step

Theorem: A language is recognized by an NFA if and only if it is recognized by a DFA

- Proof idea: We will show that every NFA N can be converted to an equivalent DFA D that recognizes all the same strings
- Technique: Simulate nondeterminism using the power set construction
 - Every state in the D will correspond to a subset of states in N, i.e. set of possible states where N could be at some point in the computation
 - Every transition in D will correspond to all of the possible states N could reach from any of the states in the previous step
 - Accept if the NFA *could be* in an accept state

$26 \, / \, 41$

 (\Rightarrow) If a language L is recognized by a DFA, then there exists an NFA to recognize it

 (\Rightarrow) If a language L is recognized by a DFA, then there exists an NFA to recognize it

Suppose there is a DFA D that recognizes L

 (\Rightarrow) If a language L is recognized by a DFA, then there exists an NFA to recognize it

- Suppose there is a DFA D that recognizes L
- Then D is an NFA!

 (\Rightarrow) If a language L is recognized by a DFA, then there exists an NFA to recognize it

- Suppose there is a DFA D that recognizes L
- Then D is an NFA!
 - It's an NFA that simply chooses not to have any nondeterminism, missing transitions, or e transition

 (\Rightarrow) If a language L is recognized by a DFA, then there exists an NFA to recognize it

- Suppose there is a DFA D that recognizes L
- Then D is an NFA!
 - It's an NFA that simply chooses not to have any nondeterminism, missing transitions, or ϵ transition
- Thus, there exists an NFA that recognizes L

$$26 \, / \, 41$$

$27 \, / \, 41$
(\Leftarrow) If a language *L* is recognized by an NFA, then there exists a DFA to recognize it

(\Leftarrow) If a language *L* is recognized by an NFA, then there exists a DFA to recognize it

Suppose there is an NFA $N = (Q_N, \Sigma, q_{s_N}, \delta_N, F_N)$ that recognizes L

27

(\Leftarrow) If a language *L* is recognized by an NFA, then there exists a DFA to recognize it

Suppose there is an NFA $N = (Q_N, \Sigma, q_{s_N}, \delta_N, F_N)$ that recognizes L

27

For now, assume N has no ϵ transitions

(\Leftarrow) If a language *L* is recognized by an NFA, then there exists a DFA to recognize it

 Suppose there is an NFA
 N = (Q_N, Σ, q_{s_N}, δ_N, F_N) that recognizes L

 For now, assume N has no ε transitions
 We will construct a DFA
 D = (Q_D, Σ, q_{s_D}, δ_D, F_D) to recognize L

(\Leftarrow) If a language *L* is recognized by an NFA, then there exists a DFA to recognize it

(\Leftarrow) If a language *L* is recognized by an NFA, then there exists a DFA to recognize it

(\Leftarrow) If a language *L* is recognized by an NFA, then there exists a DFA to recognize it

(\Leftarrow) If a language *L* is recognized by an NFA, then there exists a DFA to recognize it

а **Original NFA** а q₀ **q**₁ $\delta(q_1, b) = \{q_0\}$ b **DFA** b $\{q_0\}$ {} $\delta(\{q_1\}, b) = \{q_0\}$ {q₁} {q₀, q₁}

> 28 / 41

ьa

• Let $N = (Q, \Sigma, q_s, \delta, F)$ be an NFA

• Let $N = (Q, \Sigma, q_s, \delta, F)$ be an NFA

• Let $S \subseteq Q$ be a set of states

- Let $N = (Q, \Sigma, q_s, \delta, F)$ be an NFA
- Let $S \subseteq Q$ be a set of states
- Def: the epsilon closure E(S) is the set of states that can be reached from S using only e arrows

- Let $N = (Q, \Sigma, q_s, \delta, F)$ be an NFA
- Let $S \subseteq Q$ be a set of states
- Def: the epsilon closure E(S) is the set of states that can be reached from S using only e arrows
 - ► This includes members of *S*

Epsilon Closure Example

Epsilon Closure Example

Epsilon Closure Example

How do we extend our conversion to account for ϵ transitions?

$$Q = \mathcal{P}(Q_N)$$

$$\delta_D(R, \sigma) = \bigcup_{r \in R} \delta_N(r, \sigma)$$

$$q_{S_D} = \{q_{S_N}\}$$

$$F_D = \{R \subseteq Q_N | R \cap F_N \neq \emptyset \}$$

How do we extend our conversion to account for ϵ transitions?

$$Q = \mathcal{P}(Q_N)$$

$$\delta_D(R, \sigma) = \bigcup_{r \in R} \delta_N(r, \sigma)$$

$$q_{S_D} = \{q_{S_N}\}$$

$$F_D = \{R \subseteq Q_N | R \cap F_N \neq \emptyset\}$$

How do we extend our conversion to account for ϵ transitions?

► $Q = \mathcal{P}(Q_N)$ ► $\delta_D(R, \sigma) = E\left(\bigcup_{r \in R} \delta_N(r, \sigma)\right)$ ► $q_{S_D} = E(\{q_{s_N}\})$ ► $F_D = \{R \subseteq Q_N | R \cap F_N \neq \emptyset\}$

NFA to DFA Conversion Example Let's convert the following NFA to a DFA а ϵ b а a, b 2 3

32 / 41

33 / 41

 Recall that the regular languages are the languages recognized by DFAs

- Recall that the regular languages are the languages recognized by DFAs
- We have proven that DFAs and NFAs are equivalent

- Recall that the regular languages are the languages recognized by DFAs
- We have proven that DFAs and NFAs are equivalent
- Corollary: a language is regular if and only if it is recognized by an NFA

- Recall that the regular languages are the languages recognized by DFAs
- We have proven that DFAs and NFAs are equivalent
- Corollary: a language is regular if and only if it is recognized by an NFA
- It will often be more convenient use NFAs when we want to show that a langauge is regular!

34 / 41

Recall the regular operations:

34 41

Recall the regular operations:

• Union: $A \cup B = \{w \mid w \in C\}$

 $A \cup B = \{w | w \in A \text{ or } w \in B\}$

Recall the regular operations:

 Union: A ∪ B = {w | w ∈ A or w ∈ B}

 Concatenation: A ∘ B = {w = w₁w₂ | w₁ ∈ A, w₂ ∈ B}

Recall the regular operations:

Union: A ∪ B = {w | w ∈ A or w ∈ B}
Concatenation: A ∘ B = {w = w₁w₂|w₁ ∈ A, w₂ ∈ B}
(Kleene) Star: A* = {ε} ∪ {w = w₁w₂...w_n|w_i ∈ A}

Theorem: The regular languages are closed under the regular operations

Theorem: The regular languages are closed under the regular operations

Want to show that if L₁ and L₂ are regular, then L₁ ∪ L₂, L₁ ∘ L₂, and L^{*}₁ are regular

Theorem: The regular languages are closed under the regular operations

Want to show that if L₁ and L₂ are regular, then L₁ ∪ L₂, L₁ ∘ L₂, and L^{*}₁ are regular

With DFAs, it was messy

Theorem: The regular languages are closed under the regular operations

- ▶ Want to show that if L_1 and L_2 are regular, then $L_1 \cup L_2$, $L_1 \circ L_2$, and L_1^* are regular
- With DFAs, it was messy
- With NFAs, this will be easy!

Theorem: The regular languages are closed under the regular operations

- ▶ Want to show that if L_1 and L_2 are regular, then $L_1 \cup L_2$, $L_1 \circ L_2$, and L_1^* are regular
- With DFAs, it was messy
- With NFAs, this will be easy!
- Proof idea: We will combine the DFAs for L₁ and L₂ into an NFA that simulates the regular operation.

Theorem: The regular languages are closed under the regular operations

- ▶ Want to show that if L_1 and L_2 are regular, then $L_1 \cup L_2$, $L_1 \circ L_2$, and L_1^* are regular
- With DFAs, it was messy
- With NFAs, this will be easy!
- Proof idea: We will combine the DFAs for L₁ and L₂ into an NFA that simulates the regular operation.
 - For Kleene star we only modify the DFA for L_1

• Let N_1 recognize L_1 and let N_2 recognize L_2

- Let N_1 recognize L_1 and let N_2 recognize L_2
- Start with the two smaller NFAs

- Let N_1 recognize L_1 and let N_2 recognize L_2
- Start with the two smaller NFAs
- Add a new start state

$$36 \, / \, 41$$

- Let N_1 recognize L_1 and let N_2 recognize L_2
- Start with the two smaller NFAs
- Add a new start state
- Add ϵ transitions to the two original start states

$38 \, / \, 41$

• Let N_1 recognize L_1 and let N_2 recognize L_2

Let N₁ recognize L₁ and let N₂ recognize L₂
 Start with the two smaller NFAs

- Let N_1 recognize L_1 and let N_2 recognize L_2
- Start with the two smaller NFAs
- Add an e transition between N₁'s accept state(s) and N₂'s start state

- Let N_1 recognize L_1 and let N_2 recognize L_2
- Start with the two smaller NFAs
- Add an e transition between N₁'s accept state(s) and N₂'s start state
- Accept states in N₁ are no longer accept states (we have to accept in N₂)

$40 \, / \, 41$

 \blacktriangleright Let N_1 recognize L_1

- \blacktriangleright Let N_1 recognize L_1
- Start with the smaller NFA

- \blacktriangleright Let N_1 recognize L_1
- Start with the smaller NFA
- Add ext{e} transitions from each accept state back to the start state

- \blacktriangleright Let N_1 recognize L_1
- Start with the smaller NFA
- Add e transitions from each accept state back to the start state
- Add an new start state with an ϵ transition to the original start state

- \blacktriangleright Let N_1 recognize L_1
- Start with the smaller NFA
- Add e transitions from each accept state back to the start state
- Add an new start state with an e transition to the original start state
 - This new start state will also be an accept state
Closure under Kleene star

41 / 41