
Nondeterministic Finite Automata

Arjun Chandrasekhar

1 / 41



Nondeterministic Finite Automata

I A DFA is deterministic. For each state/symbol
combination, there is exactly one transition
defined.

I An nondeterministic finite automaton
(NFA) is like a DFA, except a state/symbol
pair may have any number of transitions
defined for it (0, 1, 2, ...).

I Can also have ε transitions which let you
change states without reading a symbol.

2 / 41



Nondeterministic Finite Automata

I A DFA is deterministic. For each state/symbol
combination, there is exactly one transition
defined.

I An nondeterministic finite automaton
(NFA) is like a DFA, except a state/symbol
pair may have any number of transitions
defined for it (0, 1, 2, ...).

I Can also have ε transitions which let you
change states without reading a symbol.

2 / 41



Nondeterministic Finite Automata

I A DFA is deterministic. For each state/symbol
combination, there is exactly one transition
defined.

I An nondeterministic finite automaton
(NFA) is like a DFA, except a state/symbol
pair may have any number of transitions
defined for it (0, 1, 2, ...).

I Can also have ε transitions which let you
change states without reading a symbol.

2 / 41



Nondeterministic Finite Automata

I A DFA is deterministic. For each state/symbol
combination, there is exactly one transition
defined.

I An nondeterministic finite automaton
(NFA) is like a DFA, except a state/symbol
pair may have any number of transitions
defined for it (0, 1, 2, ...).

I Can also have ε transitions which let you
change states without reading a symbol.

2 / 41



Nondeterministic Finite Automata

q0 q1

0

1

1

Can only read 0s here

Can only read 1s here

3 / 41



Nondeterministic Finite Automata

q0 q1

0

1

1

Can only read 0s here

Can only read 1s here

3 / 41



Nondeterministic Finite Automata

q0 q1

0

1

1

Can only read 0s here

Can only read 1s here

3 / 41



Nondeterministic Finite Automata

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

Multiple transitions for
the same symbol

Could make this transition with
or without reading a symbol

4 / 41



Nondeterministic Finite Automata

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

Multiple transitions for
the same symbol

Could make this transition with
or without reading a symbol

4 / 41



Nondeterministic Finite Automata

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

Multiple transitions for
the same symbol

Could make this transition with
or without reading a symbol

4 / 41



Computation on an NFA

I Start in the start state

I Scan symbols one-by-one
I For each symbol σ scanned:

I Go to one of the possible arrows with the label σ
I If no arrows have the label σ the computation dies
I The NFA can behave in different ways on the same

input string!

I At any point the NFA may take an ε transition
without consuming a character

I The NFA accepts if after reading all the
characters, and taking any desired ε transitions,
it is in an accept state

5 / 41



Computation on an NFA
I Start in the start state

I Scan symbols one-by-one
I For each symbol σ scanned:

I Go to one of the possible arrows with the label σ
I If no arrows have the label σ the computation dies
I The NFA can behave in different ways on the same

input string!

I At any point the NFA may take an ε transition
without consuming a character

I The NFA accepts if after reading all the
characters, and taking any desired ε transitions,
it is in an accept state

5 / 41



Computation on an NFA
I Start in the start state

I Scan symbols one-by-one

I For each symbol σ scanned:

I Go to one of the possible arrows with the label σ
I If no arrows have the label σ the computation dies
I The NFA can behave in different ways on the same

input string!

I At any point the NFA may take an ε transition
without consuming a character

I The NFA accepts if after reading all the
characters, and taking any desired ε transitions,
it is in an accept state

5 / 41



Computation on an NFA
I Start in the start state

I Scan symbols one-by-one
I For each symbol σ scanned:

I Go to one of the possible arrows with the label σ
I If no arrows have the label σ the computation dies
I The NFA can behave in different ways on the same

input string!

I At any point the NFA may take an ε transition
without consuming a character

I The NFA accepts if after reading all the
characters, and taking any desired ε transitions,
it is in an accept state

5 / 41



Computation on an NFA
I Start in the start state

I Scan symbols one-by-one
I For each symbol σ scanned:

I Go to one of the possible arrows with the label σ

I If no arrows have the label σ the computation dies
I The NFA can behave in different ways on the same

input string!

I At any point the NFA may take an ε transition
without consuming a character

I The NFA accepts if after reading all the
characters, and taking any desired ε transitions,
it is in an accept state

5 / 41



Computation on an NFA
I Start in the start state

I Scan symbols one-by-one
I For each symbol σ scanned:

I Go to one of the possible arrows with the label σ
I If no arrows have the label σ the computation dies

I The NFA can behave in different ways on the same
input string!

I At any point the NFA may take an ε transition
without consuming a character

I The NFA accepts if after reading all the
characters, and taking any desired ε transitions,
it is in an accept state

5 / 41



Computation on an NFA
I Start in the start state

I Scan symbols one-by-one
I For each symbol σ scanned:

I Go to one of the possible arrows with the label σ
I If no arrows have the label σ the computation dies
I The NFA can behave in different ways on the same

input string!

I At any point the NFA may take an ε transition
without consuming a character

I The NFA accepts if after reading all the
characters, and taking any desired ε transitions,
it is in an accept state

5 / 41



Computation on an NFA
I Start in the start state

I Scan symbols one-by-one
I For each symbol σ scanned:

I Go to one of the possible arrows with the label σ
I If no arrows have the label σ the computation dies
I The NFA can behave in different ways on the same

input string!

I At any point the NFA may take an ε transition
without consuming a character

I The NFA accepts if after reading all the
characters, and taking any desired ε transitions,
it is in an accept state

5 / 41



Computation on an NFA
I Start in the start state

I Scan symbols one-by-one
I For each symbol σ scanned:

I Go to one of the possible arrows with the label σ
I If no arrows have the label σ the computation dies
I The NFA can behave in different ways on the same

input string!

I At any point the NFA may take an ε transition
without consuming a character

I The NFA accepts if after reading all the
characters, and taking any desired ε transitions,
it is in an accept state

5 / 41



Computation on an NFA
What happens on inputs: 000, 010, 101, 011?

q0 q1

0

1

1

q0
0−→ q0

0−→ q0
0−→ q0 → REJECT

q0
0−→ q0

1−→ q1
0−→ DIES

q0
1−→ q1

0−→ DIES

q0
0−→ q0

1−→ q1
1−→ q1 → ACCEPT

6 / 41



Computation on an NFA
What happens on inputs: 000, 010, 101, 011?

q0 q1

0

1

1

q0
0−→ q0

0−→ q0
0−→ q0 → REJECT

q0
0−→ q0

1−→ q1
0−→ DIES

q0
1−→ q1

0−→ DIES

q0
0−→ q0

1−→ q1
1−→ q1 → ACCEPT

6 / 41



Computation on an NFA
What happens on inputs: 000, 010, 101, 011?

q0 q1

0

1

1

q0
0−→ q0

0−→ q0
0−→ q0 → REJECT

q0
0−→ q0

1−→ q1
0−→ DIES

q0
1−→ q1

0−→ DIES

q0
0−→ q0

1−→ q1
1−→ q1 → ACCEPT

6 / 41



Computation on an NFA
What happens on inputs: 000, 010, 101, 011?

q0 q1

0

1

1

q0
0−→ q0

0−→ q0
0−→ q0 → REJECT

q0
0−→ q0

1−→ q1
0−→ DIES

q0
1−→ q1

0−→ DIES

q0
0−→ q0

1−→ q1
1−→ q1 → ACCEPT

6 / 41



Computation on an NFA
What happens on inputs: 000, 010, 101, 011?

q0 q1

0

1

1

q0
0−→ q0

0−→ q0
0−→ q0 → REJECT

q0
0−→ q0

1−→ q1
0−→ DIES

q0
1−→ q1

0−→ DIES

q0
0−→ q0

1−→ q1
1−→ q1 → ACCEPT

6 / 41



Computation on an NFA
What happens on input 111?

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

q0
1−→ q0

1−→ q0
1−→ q0 → REJECT

q0
1−→ q1

1−→ DIES

q0
1−→ q0

1−→ q0
1−→ q1

ε−→ q2 → REJECT

q0
1−→ q1

ε−→ q2
1−→ q3

1−→ q3 → ACCEPT

7 / 41



Computation on an NFA
What happens on input 111?

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

q0
1−→ q0

1−→ q0
1−→ q0 → REJECT

q0
1−→ q1

1−→ DIES

q0
1−→ q0

1−→ q0
1−→ q1

ε−→ q2 → REJECT

q0
1−→ q1

ε−→ q2
1−→ q3

1−→ q3 → ACCEPT

7 / 41



Computation on an NFA
What happens on input 111?

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

q0
1−→ q0

1−→ q0
1−→ q0 → REJECT

q0
1−→ q1

1−→ DIES

q0
1−→ q0

1−→ q0
1−→ q1

ε−→ q2 → REJECT

q0
1−→ q1

ε−→ q2
1−→ q3

1−→ q3 → ACCEPT

7 / 41



Computation on an NFA
What happens on input 111?

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

q0
1−→ q0

1−→ q0
1−→ q0 → REJECT

q0
1−→ q1

1−→ DIES

q0
1−→ q0

1−→ q0
1−→ q1

ε−→ q2 → REJECT

q0
1−→ q1

ε−→ q2
1−→ q3

1−→ q3 → ACCEPT

7 / 41



Computation on an NFA
What happens on input 111?

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

q0
1−→ q0

1−→ q0
1−→ q0 → REJECT

q0
1−→ q1

1−→ DIES

q0
1−→ q0

1−→ q0
1−→ q1

ε−→ q2 → REJECT

q0
1−→ q1

ε−→ q2
1−→ q3

1−→ q3 → ACCEPT 7 / 41



NFA Formal Definition

Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q,Σ, δ, qs ,F )

I Q: The set of states in the NFA

I Σ the alphabet of (non-ε) characters that the
NFA can read

I qs : the starting state
I δ : Q × (Σ ∪ {ε})→ P(Q) - the transition

function

I Input: Current state & next symbol (or ε)
I Output: Set of possible next states (could be

empty)

I F - the set of accept states

8 / 41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q,Σ, δ, qs ,F )

I Q: The set of states in the NFA

I Σ the alphabet of (non-ε) characters that the
NFA can read

I qs : the starting state
I δ : Q × (Σ ∪ {ε})→ P(Q) - the transition

function

I Input: Current state & next symbol (or ε)
I Output: Set of possible next states (could be

empty)

I F - the set of accept states

8 / 41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q,Σ, δ, qs ,F )

I Q: The set of states in the NFA

I Σ the alphabet of (non-ε) characters that the
NFA can read

I qs : the starting state
I δ : Q × (Σ ∪ {ε})→ P(Q) - the transition

function

I Input: Current state & next symbol (or ε)
I Output: Set of possible next states (could be

empty)

I F - the set of accept states

8 / 41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q,Σ, δ, qs ,F )

I Q: The set of states in the NFA

I Σ the alphabet of (non-ε) characters that the
NFA can read

I qs : the starting state
I δ : Q × (Σ ∪ {ε})→ P(Q) - the transition

function

I Input: Current state & next symbol (or ε)
I Output: Set of possible next states (could be

empty)

I F - the set of accept states

8 / 41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q,Σ, δ, qs ,F )

I Q: The set of states in the NFA

I Σ the alphabet of (non-ε) characters that the
NFA can read

I qs : the starting state

I δ : Q × (Σ ∪ {ε})→ P(Q) - the transition
function

I Input: Current state & next symbol (or ε)
I Output: Set of possible next states (could be

empty)

I F - the set of accept states

8 / 41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q,Σ, δ, qs ,F )

I Q: The set of states in the NFA

I Σ the alphabet of (non-ε) characters that the
NFA can read

I qs : the starting state
I δ : Q × (Σ ∪ {ε})→ P(Q) - the transition

function

I Input: Current state & next symbol (or ε)
I Output: Set of possible next states (could be

empty)

I F - the set of accept states

8 / 41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q,Σ, δ, qs ,F )

I Q: The set of states in the NFA

I Σ the alphabet of (non-ε) characters that the
NFA can read

I qs : the starting state
I δ : Q × (Σ ∪ {ε})→ P(Q) - the transition

function
I Input: Current state & next symbol (or ε)

I Output: Set of possible next states (could be
empty)

I F - the set of accept states

8 / 41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q,Σ, δ, qs ,F )

I Q: The set of states in the NFA

I Σ the alphabet of (non-ε) characters that the
NFA can read

I qs : the starting state
I δ : Q × (Σ ∪ {ε})→ P(Q) - the transition

function
I Input: Current state & next symbol (or ε)
I Output: Set of possible next states (could be

empty)

I F - the set of accept states

8 / 41



NFA Formal Definition
Def: A Nondeterministic finite automate
(NFA) is a 5-tuple (Q,Σ, δ, qs ,F )

I Q: The set of states in the NFA

I Σ the alphabet of (non-ε) characters that the
NFA can read

I qs : the starting state
I δ : Q × (Σ ∪ {ε})→ P(Q) - the transition

function
I Input: Current state & next symbol (or ε)
I Output: Set of possible next states (could be

empty)

I F - the set of accept states

8 / 41



NFA Accepting Computation

I An NFA can do many different things on the
same string

I It may be capable of both accepting and rejecting
the same string!

I What does it mean for an NFA to accept a
string?

I Informally, an NFA accepts a string w if there
exists a computation path that ends in an
accept state

I Even if every other path rejects and/or dies, just
one accepting path is good enough

9 / 41



NFA Accepting Computation

I An NFA can do many different things on the
same string

I It may be capable of both accepting and rejecting
the same string!

I What does it mean for an NFA to accept a
string?

I Informally, an NFA accepts a string w if there
exists a computation path that ends in an
accept state

I Even if every other path rejects and/or dies, just
one accepting path is good enough

9 / 41



NFA Accepting Computation

I An NFA can do many different things on the
same string
I It may be capable of both accepting and rejecting

the same string!

I What does it mean for an NFA to accept a
string?

I Informally, an NFA accepts a string w if there
exists a computation path that ends in an
accept state

I Even if every other path rejects and/or dies, just
one accepting path is good enough

9 / 41



NFA Accepting Computation

I An NFA can do many different things on the
same string
I It may be capable of both accepting and rejecting

the same string!

I What does it mean for an NFA to accept a
string?

I Informally, an NFA accepts a string w if there
exists a computation path that ends in an
accept state

I Even if every other path rejects and/or dies, just
one accepting path is good enough

9 / 41



NFA Accepting Computation

I An NFA can do many different things on the
same string
I It may be capable of both accepting and rejecting

the same string!

I What does it mean for an NFA to accept a
string?

I Informally, an NFA accepts a string w if there
exists a computation path that ends in an
accept state

I Even if every other path rejects and/or dies, just
one accepting path is good enough

9 / 41



NFA Accepting Computation

I An NFA can do many different things on the
same string
I It may be capable of both accepting and rejecting

the same string!

I What does it mean for an NFA to accept a
string?

I Informally, an NFA accepts a string w if there
exists a computation path that ends in an
accept state
I Even if every other path rejects and/or dies, just

one accepting path is good enough

9 / 41



NFA Accepting Computation

An NFA accepts a string w = w1w2 . . .wn if:

1. We can re-write w as y = y1y2 . . . yn where
each yi ∈ (Σ ∪ ε) (i.e. insert empty ε
characters into w) and ...

2. There exists a sequence of states q0q1 . . . qn
such that...

2.1 q0 = qs (start in the start state)
2.2 qi ∈ δ(qi−1, yi) for all i (all transitions are valid)
2.3 qn ∈ F (end in an accept state)

10 / 41



NFA Accepting Computation

An NFA accepts a string w = w1w2 . . .wn if:

1. We can re-write w as y = y1y2 . . . yn where
each yi ∈ (Σ ∪ ε) (i.e. insert empty ε
characters into w) and ...

2. There exists a sequence of states q0q1 . . . qn
such that...

2.1 q0 = qs (start in the start state)
2.2 qi ∈ δ(qi−1, yi) for all i (all transitions are valid)
2.3 qn ∈ F (end in an accept state)

10 / 41



NFA Accepting Computation

An NFA accepts a string w = w1w2 . . .wn if:

1. We can re-write w as y = y1y2 . . . yn where
each yi ∈ (Σ ∪ ε) (i.e. insert empty ε
characters into w) and ...

2. There exists a sequence of states q0q1 . . . qn
such that...

2.1 q0 = qs (start in the start state)
2.2 qi ∈ δ(qi−1, yi) for all i (all transitions are valid)
2.3 qn ∈ F (end in an accept state)

10 / 41



NFA Accepting Computation

An NFA accepts a string w = w1w2 . . .wn if:

1. We can re-write w as y = y1y2 . . . yn where
each yi ∈ (Σ ∪ ε) (i.e. insert empty ε
characters into w) and ...

2. There exists a sequence of states q0q1 . . . qn
such that...

2.1 q0 = qs (start in the start state)
2.2 qi ∈ δ(qi−1, yi) for all i (all transitions are valid)
2.3 qn ∈ F (end in an accept state)

10 / 41



NFA Accepting Computation

An NFA accepts a string w = w1w2 . . .wn if:

1. We can re-write w as y = y1y2 . . . yn where
each yi ∈ (Σ ∪ ε) (i.e. insert empty ε
characters into w) and ...

2. There exists a sequence of states q0q1 . . . qn
such that...

2.1 q0 = qs (start in the start state)

2.2 qi ∈ δ(qi−1, yi) for all i (all transitions are valid)
2.3 qn ∈ F (end in an accept state)

10 / 41



NFA Accepting Computation

An NFA accepts a string w = w1w2 . . .wn if:

1. We can re-write w as y = y1y2 . . . yn where
each yi ∈ (Σ ∪ ε) (i.e. insert empty ε
characters into w) and ...

2. There exists a sequence of states q0q1 . . . qn
such that...

2.1 q0 = qs (start in the start state)
2.2 qi ∈ δ(qi−1, yi) for all i (all transitions are valid)

2.3 qn ∈ F (end in an accept state)

10 / 41



NFA Accepting Computation

An NFA accepts a string w = w1w2 . . .wn if:

1. We can re-write w as y = y1y2 . . . yn where
each yi ∈ (Σ ∪ ε) (i.e. insert empty ε
characters into w) and ...

2. There exists a sequence of states q0q1 . . . qn
such that...

2.1 q0 = qs (start in the start state)
2.2 qi ∈ δ(qi−1, yi) for all i (all transitions are valid)
2.3 qn ∈ F (end in an accept state)

10 / 41



NFA Accepting Computation

Which strings are accepted by this NFA?

q0 q1

0

1

1

A) ε (empty string)

B) 1

X

C) 010

D) 101

11 / 41



NFA Accepting Computation

Which strings are accepted by this NFA?

q0 q1

0

1

1

A) ε (empty string)

B) 1 X

C) 010

D) 101

11 / 41



NFA Accepting Computation

Which strings are accepted by this NFA?

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

A) ε (empty string)

B) 111

X

C) 111101000

X

D) 0000

12 / 41



NFA Accepting Computation

Which strings are accepted by this NFA?

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

A) ε (empty string)

B) 111 X

C) 111101000 X

D) 0000

12 / 41



NFA Accepting Computation
Which strings are accepted by this NFA?

q0 q1 q2

q3 q4

c c

a

a

ε

b

A) ε (empty string)

B) abba

C) cc

D) ccccccccccccc

13 / 41



NFA Accepting Computation
Which strings are accepted by this NFA?

q0 q1 q2

q3 q4

c c

a

a

ε

b

A) ε (empty string) X

B) abba

C) cc X

D) ccccccccccccc

13 / 41



The Language of an NFA

I Let N be an NFA

I The language of N is the set of strings that N
accepts i.e.

L(N) = {w |N accepts w}

14 / 41



The Language of an NFA

I Let N be an NFA

I The language of N is the set of strings that N
accepts i.e.

L(N) = {w |N accepts w}

14 / 41



The Language of an NFA

I Let N be an NFA

I The language of N is the set of strings that N
accepts i.e.

L(N) = {w |N accepts w}

14 / 41



The Language of an NFA

What is the language of this NFA

q0 q1

0

1

1

L(N) = {w | 0s precede 1s, at least one 1}

15 / 41



The Language of an NFA

What is the language of this NFA

q0 q1

0

1

1

L(N) = {w | 0s precede 1s, at least one 1}

15 / 41



The Language of an NFA

What is the language of this NFA

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

L(N) = {w | w contains 101 or 11 as a substring}

16 / 41



The Language of an NFA

What is the language of this NFA

q0 q1 q2 q3

0, 1

1 ε, 0 1

0, 1

L(N) = {w | w contains 101 or 11 as a substring}

16 / 41



The Language of an NFA

What is the language of this NFA

q0 q1 q2

q3 q4

c c

a

a

ε

b

L(N) = {w | w has either zero or two a’s followed
by any number of b’s, OR w = cc}

17 / 41



The Language of an NFA

What is the language of this NFA

q0 q1 q2

q3 q4

c c

a

a

ε

b

L(N) = {w | w has either zero or two a’s followed
by any number of b’s, OR w = cc}

17 / 41



Nondeterminism

I As said earlier, an NFA can have many possible
computation paths

I We can think of nondeterminism in two ways:

I The NFA “guesses” which choice will ultimately
lead to an accepting state

I The NFA branches/copies itself for each possible
choice.

18 / 41



Nondeterminism

I As said earlier, an NFA can have many possible
computation paths

I We can think of nondeterminism in two ways:

I The NFA “guesses” which choice will ultimately
lead to an accepting state

I The NFA branches/copies itself for each possible
choice.

18 / 41



Nondeterminism

I As said earlier, an NFA can have many possible
computation paths

I We can think of nondeterminism in two ways:

I The NFA “guesses” which choice will ultimately
lead to an accepting state

I The NFA branches/copies itself for each possible
choice.

18 / 41



Nondeterminism

I As said earlier, an NFA can have many possible
computation paths

I We can think of nondeterminism in two ways:
I The NFA “guesses” which choice will ultimately

lead to an accepting state

I The NFA branches/copies itself for each possible
choice.

18 / 41



Nondeterminism

I As said earlier, an NFA can have many possible
computation paths

I We can think of nondeterminism in two ways:
I The NFA “guesses” which choice will ultimately

lead to an accepting state
I The NFA branches/copies itself for each possible

choice.

18 / 41



NFAs vs DFAs

I Are NFAs more powerful than DFAs?

I That is, are there languages that an NFA can
recognize, but a DFA cannot?

I As it turns out, no! So why study them?

I If we want to show a langauge is regular, It is often
easier to describe an NFA than a DFA.

I If we actually want to be able to recognize the
language, then we can automate the conversion of
an NFA to a DFA.

19 / 41



NFAs vs DFAs

I Are NFAs more powerful than DFAs?

I That is, are there languages that an NFA can
recognize, but a DFA cannot?

I As it turns out, no! So why study them?

I If we want to show a langauge is regular, It is often
easier to describe an NFA than a DFA.

I If we actually want to be able to recognize the
language, then we can automate the conversion of
an NFA to a DFA.

19 / 41



NFAs vs DFAs

I Are NFAs more powerful than DFAs?
I That is, are there languages that an NFA can

recognize, but a DFA cannot?

I As it turns out, no! So why study them?

I If we want to show a langauge is regular, It is often
easier to describe an NFA than a DFA.

I If we actually want to be able to recognize the
language, then we can automate the conversion of
an NFA to a DFA.

19 / 41



NFAs vs DFAs

I Are NFAs more powerful than DFAs?
I That is, are there languages that an NFA can

recognize, but a DFA cannot?

I As it turns out, no! So why study them?

I If we want to show a langauge is regular, It is often
easier to describe an NFA than a DFA.

I If we actually want to be able to recognize the
language, then we can automate the conversion of
an NFA to a DFA.

19 / 41



NFAs vs DFAs

I Are NFAs more powerful than DFAs?
I That is, are there languages that an NFA can

recognize, but a DFA cannot?

I As it turns out, no! So why study them?
I If we want to show a langauge is regular, It is often

easier to describe an NFA than a DFA.

I If we actually want to be able to recognize the
language, then we can automate the conversion of
an NFA to a DFA.

19 / 41



NFAs vs DFAs

I Are NFAs more powerful than DFAs?
I That is, are there languages that an NFA can

recognize, but a DFA cannot?

I As it turns out, no! So why study them?
I If we want to show a langauge is regular, It is often

easier to describe an NFA than a DFA.
I If we actually want to be able to recognize the

language, then we can automate the conversion of
an NFA to a DFA.

19 / 41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w ends with bba}

q0 q1 q2 q3

a, b

b b a

“Guess” when we’ve reached the end

20 / 41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w ends with bba}

q0 q1 q2 q3

a, b

b b a

“Guess” when we’ve reached the end

20 / 41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w ends with bba}

q0 q1 q2 q3

a, b

b b a

“Guess” when we’ve reached the end

20 / 41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w contains bba}

q0 q1 q2 q3

a, b

b b a

a, b

“Guess” where bba occurs

21 / 41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w contains bba}

q0 q1 q2 q3

a, b

b b a

a, b

“Guess” where bba occurs

21 / 41



Designing an NFA

Design a 4-state NFA to recognize the following
language: L = {w | w contains bba}

q0 q1 q2 q3

a, b

b b a

a, b

“Guess” where bba occurs

21 / 41



Combining NFAs

Let Σ = {0}. Design an NFA to recognize strings
with an even number of 0s

even odd

0

0

22 / 41



Combining NFAs

Let Σ = {0}. Design an NFA to recognize strings
with an even number of 0s

even odd

0

0

22 / 41



Combining NFAs

Let Σ = {0}. Design an NFA to recognize strings
with an even number of 0s

even odd

0

0

22 / 41



Combining NFAs

Let Σ = {0}. Design an NFA to recognize strings
with an exactly three 0s

q0 q1 q2 q3
0 0 0

23 / 41



Combining NFAs

Let Σ = {0}. Design an NFA to recognize strings
with an exactly three 0s

q0 q1 q2 q3
0 0 0

23 / 41



Combining NFAs
Let Σ = {0}. Design an NFA to recognize strings
where the number of 0s is even or exactly 3

start

even odd

0

0

q0 q1 q2 q3
0 0 0

ε

ε

“Guess” which machine to use

24 / 41



Combining NFAs
Let Σ = {0}. Design an NFA to recognize strings
where the number of 0s is even or exactly 3

start

even odd

0

0

q0 q1 q2 q3
0 0 0

ε

ε

“Guess” which machine to use

24 / 41



Combining NFAs
Let Σ = {0}. Design an NFA to recognize strings
where the number of 0s is even or exactly 3

start

even odd

0

0

q0 q1 q2 q3
0 0 0

ε

ε

“Guess” which machine to use

24 / 41



Combining NFAs
Let Σ = {0}. Design an NFA to recognize strings
where the number of 0s is even or exactly 3

start

even odd

0

0

q0 q1 q2 q3
0 0 0

ε

ε

“Guess” which machine to use

24 / 41



Combining NFAs
Let Σ = {0}. Design an NFA to recognize strings
where the number of 0s is even or exactly 3

start

even odd

0

0

q0 q1 q2 q3
0 0 0

ε

ε

“Guess” which machine to use

24 / 41



Equivalence of NFAs and DFAs

Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA

I Proof idea: We will show that every NFA N
can be converted to an equivalent DFA D that
recognizes all the same strings

I Technique: Simulate nondeterminism using
the power set construction

I Every state in the D will correspond to a subset of
states in N , i.e. set of possible states where N
could be at some point in the computation

I Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step

I Accept if the NFA could be in an accept state

25 / 41



Equivalence of NFAs and DFAs
Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA

I Proof idea: We will show that every NFA N
can be converted to an equivalent DFA D that
recognizes all the same strings

I Technique: Simulate nondeterminism using
the power set construction

I Every state in the D will correspond to a subset of
states in N , i.e. set of possible states where N
could be at some point in the computation

I Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step

I Accept if the NFA could be in an accept state

25 / 41



Equivalence of NFAs and DFAs
Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA
I Proof idea: We will show that every NFA N

can be converted to an equivalent DFA D that
recognizes all the same strings

I Technique: Simulate nondeterminism using
the power set construction

I Every state in the D will correspond to a subset of
states in N , i.e. set of possible states where N
could be at some point in the computation

I Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step

I Accept if the NFA could be in an accept state

25 / 41



Equivalence of NFAs and DFAs
Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA
I Proof idea: We will show that every NFA N

can be converted to an equivalent DFA D that
recognizes all the same strings

I Technique: Simulate nondeterminism using
the power set construction

I Every state in the D will correspond to a subset of
states in N , i.e. set of possible states where N
could be at some point in the computation

I Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step

I Accept if the NFA could be in an accept state

25 / 41



Equivalence of NFAs and DFAs
Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA
I Proof idea: We will show that every NFA N

can be converted to an equivalent DFA D that
recognizes all the same strings

I Technique: Simulate nondeterminism using
the power set construction
I Every state in the D will correspond to a subset of

states in N , i.e. set of possible states where N
could be at some point in the computation

I Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step

I Accept if the NFA could be in an accept state

25 / 41



Equivalence of NFAs and DFAs
Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA
I Proof idea: We will show that every NFA N

can be converted to an equivalent DFA D that
recognizes all the same strings

I Technique: Simulate nondeterminism using
the power set construction
I Every state in the D will correspond to a subset of

states in N , i.e. set of possible states where N
could be at some point in the computation

I Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step

I Accept if the NFA could be in an accept state

25 / 41



Equivalence of NFAs and DFAs
Theorem: A language is recognized by an NFA if
and only if it is recognized by a DFA
I Proof idea: We will show that every NFA N

can be converted to an equivalent DFA D that
recognizes all the same strings

I Technique: Simulate nondeterminism using
the power set construction
I Every state in the D will correspond to a subset of

states in N , i.e. set of possible states where N
could be at some point in the computation

I Every transition in D will correspond to all of the
possible states N could reach from any of the
states in the previous step

I Accept if the NFA could be in an accept state

25 / 41



Equivalence between NFAs and DFAs

(⇒) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

I Suppose there is a DFA D that recognizes L
I Then D is an NFA!

I It’s an NFA that simply chooses not to have any
nondeterminism, missing transitions, or ε transition

I Thus, there exists an NFA that recognizes L

26 / 41



Equivalence between NFAs and DFAs

(⇒) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

I Suppose there is a DFA D that recognizes L
I Then D is an NFA!

I It’s an NFA that simply chooses not to have any
nondeterminism, missing transitions, or ε transition

I Thus, there exists an NFA that recognizes L

26 / 41



Equivalence between NFAs and DFAs

(⇒) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

I Suppose there is a DFA D that recognizes L

I Then D is an NFA!

I It’s an NFA that simply chooses not to have any
nondeterminism, missing transitions, or ε transition

I Thus, there exists an NFA that recognizes L

26 / 41



Equivalence between NFAs and DFAs

(⇒) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

I Suppose there is a DFA D that recognizes L
I Then D is an NFA!

I It’s an NFA that simply chooses not to have any
nondeterminism, missing transitions, or ε transition

I Thus, there exists an NFA that recognizes L

26 / 41



Equivalence between NFAs and DFAs

(⇒) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

I Suppose there is a DFA D that recognizes L
I Then D is an NFA!

I It’s an NFA that simply chooses not to have any
nondeterminism, missing transitions, or ε transition

I Thus, there exists an NFA that recognizes L

26 / 41



Equivalence between NFAs and DFAs

(⇒) If a language L is recognized by a DFA, then
there exists an NFA to recognize it

I Suppose there is a DFA D that recognizes L
I Then D is an NFA!

I It’s an NFA that simply chooses not to have any
nondeterminism, missing transitions, or ε transition

I Thus, there exists an NFA that recognizes L

26 / 41



Equivalence between NFAs and DFAs

(⇐) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

I Suppose there is an NFA
N = (QN ,Σ, qsN , δN ,FN) that recognizes L

I For now, assume N has no ε transitions
I We will construct a DFA

D = (QD ,Σ, qSD , δD ,FD) to recognize L

I QD = P(QN)
I δD(R , σ) =

⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅} (i.e., all subsets that

include at least one accept state)

27 / 41



Equivalence between NFAs and DFAs
(⇐) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

I Suppose there is an NFA
N = (QN ,Σ, qsN , δN ,FN) that recognizes L

I For now, assume N has no ε transitions
I We will construct a DFA

D = (QD ,Σ, qSD , δD ,FD) to recognize L

I QD = P(QN)
I δD(R , σ) =

⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅} (i.e., all subsets that

include at least one accept state)

27 / 41



Equivalence between NFAs and DFAs
(⇐) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

I Suppose there is an NFA
N = (QN ,Σ, qsN , δN ,FN) that recognizes L

I For now, assume N has no ε transitions
I We will construct a DFA

D = (QD ,Σ, qSD , δD ,FD) to recognize L

I QD = P(QN)
I δD(R , σ) =

⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅} (i.e., all subsets that

include at least one accept state)

27 / 41



Equivalence between NFAs and DFAs
(⇐) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

I Suppose there is an NFA
N = (QN ,Σ, qsN , δN ,FN) that recognizes L

I For now, assume N has no ε transitions

I We will construct a DFA
D = (QD ,Σ, qSD , δD ,FD) to recognize L

I QD = P(QN)
I δD(R , σ) =

⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅} (i.e., all subsets that

include at least one accept state)

27 / 41



Equivalence between NFAs and DFAs
(⇐) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

I Suppose there is an NFA
N = (QN ,Σ, qsN , δN ,FN) that recognizes L

I For now, assume N has no ε transitions
I We will construct a DFA

D = (QD ,Σ, qSD , δD ,FD) to recognize L

I QD = P(QN)
I δD(R , σ) =

⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅} (i.e., all subsets that

include at least one accept state)

27 / 41



Equivalence between NFAs and DFAs
(⇐) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

I Suppose there is an NFA
N = (QN ,Σ, qsN , δN ,FN) that recognizes L

I For now, assume N has no ε transitions
I We will construct a DFA

D = (QD ,Σ, qSD , δD ,FD) to recognize L
I QD = P(QN)

I δD(R , σ) =
⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅} (i.e., all subsets that

include at least one accept state)

27 / 41



Equivalence between NFAs and DFAs
(⇐) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

I Suppose there is an NFA
N = (QN ,Σ, qsN , δN ,FN) that recognizes L

I For now, assume N has no ε transitions
I We will construct a DFA

D = (QD ,Σ, qSD , δD ,FD) to recognize L
I QD = P(QN)
I δD(R , σ) =

⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅} (i.e., all subsets that

include at least one accept state)

27 / 41



Equivalence between NFAs and DFAs
(⇐) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

I Suppose there is an NFA
N = (QN ,Σ, qsN , δN ,FN) that recognizes L

I For now, assume N has no ε transitions
I We will construct a DFA

D = (QD ,Σ, qSD , δD ,FD) to recognize L
I QD = P(QN)
I δD(R , σ) =

⋃
r∈R

δN(r , σ)

I qSD = {qsN}

I FD = {R ⊆ QN |R ∩ FN 6= ∅} (i.e., all subsets that
include at least one accept state)

27 / 41



Equivalence between NFAs and DFAs
(⇐) If a language L is recognized by an NFA, then
there exists a DFA to recognize it

I Suppose there is an NFA
N = (QN ,Σ, qsN , δN ,FN) that recognizes L

I For now, assume N has no ε transitions
I We will construct a DFA

D = (QD ,Σ, qSD , δD ,FD) to recognize L
I QD = P(QN)
I δD(R , σ) =

⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅} (i.e., all subsets that

include at least one accept state)

27 / 41



NFA to DFA conversion

28 / 41



NFA to DFA conversion

28 / 41



NFA to DFA conversion

28 / 41



NFA to DFA conversion

28 / 41



NFA to DFA conversion

28 / 41



NFA to DFA conversion

28 / 41



NFA to DFA conversion

28 / 41



NFA to DFA conversion

28 / 41



NFA to DFA conversion

28 / 41



NFA to DFA conversion

28 / 41



Epsilon Closure

I Let N = (Q,Σ, qs , δ,F ) be an NFA

I Let S ⊆ Q be a set of states
I Def: the epsilon closure E (S) is the set of

states that can be reached from S using only ε
arrows

I This includes members of S

29 / 41



Epsilon Closure

I Let N = (Q,Σ, qs , δ,F ) be an NFA

I Let S ⊆ Q be a set of states
I Def: the epsilon closure E (S) is the set of

states that can be reached from S using only ε
arrows

I This includes members of S

29 / 41



Epsilon Closure

I Let N = (Q,Σ, qs , δ,F ) be an NFA

I Let S ⊆ Q be a set of states

I Def: the epsilon closure E (S) is the set of
states that can be reached from S using only ε
arrows

I This includes members of S

29 / 41



Epsilon Closure

I Let N = (Q,Σ, qs , δ,F ) be an NFA

I Let S ⊆ Q be a set of states
I Def: the epsilon closure E (S) is the set of

states that can be reached from S using only ε
arrows

I This includes members of S

29 / 41



Epsilon Closure

I Let N = (Q,Σ, qs , δ,F ) be an NFA

I Let S ⊆ Q be a set of states
I Def: the epsilon closure E (S) is the set of

states that can be reached from S using only ε
arrows
I This includes members of S

29 / 41



Epsilon Closure Example

30 / 41



Epsilon Closure Example

30 / 41



Epsilon Closure Example

30 / 41



NFA to DFA conversion

How do we extend our conversion to account for ε
transitions?

I Q = P(QN)

I δD(R , σ) =
⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅}

31 / 41



NFA to DFA conversion

How do we extend our conversion to account for ε
transitions?

I Q = P(QN)

I δD(R , σ) =
⋃
r∈R

δN(r , σ)

I qSD = {qsN}
I FD = {R ⊆ QN |R ∩ FN 6= ∅}

31 / 41



NFA to DFA conversion

How do we extend our conversion to account for ε
transitions?

I Q = P(QN)

I δD(R , σ) = E

(⋃
r∈R

δN(r , σ)

)
I qSD = E ({qsN})
I FD = {R ⊆ QN |R ∩ FN 6= ∅}

31 / 41



NFA to DFA Conversion Example
Let’s convert the following NFA to a DFA

1

2 3

b εa

a, b

a

{1, 3}

{2}a

b

{3}

{2, 3}

b

a

{1, 2, 3}

∅

b

a

a

b

a, b

a

b

{1}

{1, 2}

Unreachable states
b

a

a, b

32 / 41



NFA to DFA Conversion Example

{1, 3}

{2}a

b

{3}

{2, 3}

b

a

{1, 2, 3}

∅

b

a

a

b

a, b

a

b

{1}

{1, 2}

Unreachable states
b

a

a, b

32 / 41



NFA to DFA Conversion Example

{1, 3}

{2}a

b

{3}

{2, 3}

b

a

{1, 2, 3}

∅

b

a

a

b

a, b

a

b

{1}

{1, 2}

Unreachable states
b

a

a, b

32 / 41



NFA to DFA Conversion Example

{1, 3}

{2}a

b

{3}

{2, 3}

b

a

{1, 2, 3}

∅

b

a

a

b

a, b

a

b

{1}

{1, 2}

Unreachable states
b

a

a, b

32 / 41



NFA to DFA Conversion Example

{1, 3}

{2}a

b

{3}

{2, 3}

b

a

{1, 2, 3}

∅

b

a

a

b

a, b

a

b

{1}

{1, 2}

Unreachable states
b

a

a, b

32 / 41



NFA to DFA Conversion Example

{1, 3}

{2}a

b

{3}

{2, 3}

b

a

{1, 2, 3}

∅

b

a

a

b

a, b

a

b

{1}

{1, 2}

Unreachable states
b

a

a, b

32 / 41



NFA to DFA Conversion Example

{1, 3}

{2}a

b

{3}

{2, 3}

b

a

{1, 2, 3}

∅

b

a

a

b

a, b

a

b

{1}

{1, 2}

Unreachable states
b

a

a, b

32 / 41



NFAs and regular languages

I Recall that the regular languages are the
languages recognized by DFAs

I We have proven that DFAs and NFAs are
equivalent

I Corollary: a language is regular if and only if
it is recognized by an NFA

I It will often be more convenient use NFAs when
we want to show that a langauge is regular!

33 / 41



NFAs and regular languages

I Recall that the regular languages are the
languages recognized by DFAs

I We have proven that DFAs and NFAs are
equivalent

I Corollary: a language is regular if and only if
it is recognized by an NFA

I It will often be more convenient use NFAs when
we want to show that a langauge is regular!

33 / 41



NFAs and regular languages

I Recall that the regular languages are the
languages recognized by DFAs

I We have proven that DFAs and NFAs are
equivalent

I Corollary: a language is regular if and only if
it is recognized by an NFA

I It will often be more convenient use NFAs when
we want to show that a langauge is regular!

33 / 41



NFAs and regular languages

I Recall that the regular languages are the
languages recognized by DFAs

I We have proven that DFAs and NFAs are
equivalent

I Corollary: a language is regular if and only if
it is recognized by an NFA

I It will often be more convenient use NFAs when
we want to show that a langauge is regular!

33 / 41



NFAs and regular languages

I Recall that the regular languages are the
languages recognized by DFAs

I We have proven that DFAs and NFAs are
equivalent

I Corollary: a language is regular if and only if
it is recognized by an NFA

I It will often be more convenient use NFAs when
we want to show that a langauge is regular!

33 / 41



NFAs and regular languages

I Recall that the regular languages are the
languages recognized by DFAs

I We have proven that DFAs and NFAs are
equivalent

I Corollary: a language is regular if and only if
it is recognized by an NFA

I It will often be more convenient use NFAs when
we want to show that a langauge is regular!

33 / 41



Regular operations

Recall the regular operations:

I Union:
A ∪ B = {w |w ∈ A or w ∈ B}

I Concatenation:
A ◦ B = {w = w1w2|w1 ∈ A,w2 ∈ B}

I (Kleene) Star:
A∗ = {ε} ∪ {w = w1w2 . . .wn|wi ∈ A}

34 / 41



Regular operations

Recall the regular operations:

I Union:
A ∪ B = {w |w ∈ A or w ∈ B}

I Concatenation:
A ◦ B = {w = w1w2|w1 ∈ A,w2 ∈ B}

I (Kleene) Star:
A∗ = {ε} ∪ {w = w1w2 . . .wn|wi ∈ A}

34 / 41



Regular operations

Recall the regular operations:

I Union:
A ∪ B = {w |w ∈ A or w ∈ B}

I Concatenation:
A ◦ B = {w = w1w2|w1 ∈ A,w2 ∈ B}

I (Kleene) Star:
A∗ = {ε} ∪ {w = w1w2 . . .wn|wi ∈ A}

34 / 41



Regular operations

Recall the regular operations:

I Union:
A ∪ B = {w |w ∈ A or w ∈ B}

I Concatenation:
A ◦ B = {w = w1w2|w1 ∈ A,w2 ∈ B}

I (Kleene) Star:
A∗ = {ε} ∪ {w = w1w2 . . .wn|wi ∈ A}

34 / 41



Regular operations

Recall the regular operations:

I Union:
A ∪ B = {w |w ∈ A or w ∈ B}

I Concatenation:
A ◦ B = {w = w1w2|w1 ∈ A,w2 ∈ B}

I (Kleene) Star:
A∗ = {ε} ∪ {w = w1w2 . . .wn|wi ∈ A}

34 / 41



Kleene’s Theorem

Theorem: The regular languages are closed under
the regular operations

I Want to show that if L1 and L2 are regular,
then L1 ∪ L2, L1 ◦ L2, and L∗1 are regular

I With DFAs, it was messy

I With NFAs, this will be easy!
I Proof idea: We will combine the DFAs for L1

and L2 into an NFA that simulates the regular
operation.

I For Kleene star we only modify the DFA for L1

35 / 41



Kleene’s Theorem

Theorem: The regular languages are closed under
the regular operations

I Want to show that if L1 and L2 are regular,
then L1 ∪ L2, L1 ◦ L2, and L∗1 are regular

I With DFAs, it was messy

I With NFAs, this will be easy!
I Proof idea: We will combine the DFAs for L1

and L2 into an NFA that simulates the regular
operation.

I For Kleene star we only modify the DFA for L1

35 / 41



Kleene’s Theorem

Theorem: The regular languages are closed under
the regular operations

I Want to show that if L1 and L2 are regular,
then L1 ∪ L2, L1 ◦ L2, and L∗1 are regular

I With DFAs, it was messy

I With NFAs, this will be easy!
I Proof idea: We will combine the DFAs for L1

and L2 into an NFA that simulates the regular
operation.

I For Kleene star we only modify the DFA for L1

35 / 41



Kleene’s Theorem

Theorem: The regular languages are closed under
the regular operations

I Want to show that if L1 and L2 are regular,
then L1 ∪ L2, L1 ◦ L2, and L∗1 are regular

I With DFAs, it was messy

I With NFAs, this will be easy!
I Proof idea: We will combine the DFAs for L1

and L2 into an NFA that simulates the regular
operation.

I For Kleene star we only modify the DFA for L1

35 / 41



Kleene’s Theorem

Theorem: The regular languages are closed under
the regular operations

I Want to show that if L1 and L2 are regular,
then L1 ∪ L2, L1 ◦ L2, and L∗1 are regular

I With DFAs, it was messy

I With NFAs, this will be easy!

I Proof idea: We will combine the DFAs for L1
and L2 into an NFA that simulates the regular
operation.

I For Kleene star we only modify the DFA for L1

35 / 41



Kleene’s Theorem

Theorem: The regular languages are closed under
the regular operations

I Want to show that if L1 and L2 are regular,
then L1 ∪ L2, L1 ◦ L2, and L∗1 are regular

I With DFAs, it was messy

I With NFAs, this will be easy!
I Proof idea: We will combine the DFAs for L1

and L2 into an NFA that simulates the regular
operation.

I For Kleene star we only modify the DFA for L1

35 / 41



Kleene’s Theorem

Theorem: The regular languages are closed under
the regular operations

I Want to show that if L1 and L2 are regular,
then L1 ∪ L2, L1 ◦ L2, and L∗1 are regular

I With DFAs, it was messy

I With NFAs, this will be easy!
I Proof idea: We will combine the DFAs for L1

and L2 into an NFA that simulates the regular
operation.
I For Kleene star we only modify the DFA for L1

35 / 41



Closure under union

I Let N1 recognize L1 and let N2 recognize L2
I Start with the two smaller NFAs

I Add a new start state

I Add ε transitions to the two original start states

36 / 41



Closure under union

I Let N1 recognize L1 and let N2 recognize L2

I Start with the two smaller NFAs

I Add a new start state

I Add ε transitions to the two original start states

36 / 41



Closure under union

I Let N1 recognize L1 and let N2 recognize L2
I Start with the two smaller NFAs

I Add a new start state

I Add ε transitions to the two original start states

36 / 41



Closure under union

I Let N1 recognize L1 and let N2 recognize L2
I Start with the two smaller NFAs

I Add a new start state

I Add ε transitions to the two original start states

36 / 41



Closure under union

I Let N1 recognize L1 and let N2 recognize L2
I Start with the two smaller NFAs

I Add a new start state

I Add ε transitions to the two original start states

36 / 41



Closure under union

37 / 41



Closure under concatenation

I Let N1 recognize L1 and let N2 recognize L2
I Start with the two smaller NFAs

I Add an ε transition between N1’s accept
state(s) and N2’s start state

I Accept states in N1 are no longer accept states
(we have to accept in N2)

38 / 41



Closure under concatenation

I Let N1 recognize L1 and let N2 recognize L2

I Start with the two smaller NFAs

I Add an ε transition between N1’s accept
state(s) and N2’s start state

I Accept states in N1 are no longer accept states
(we have to accept in N2)

38 / 41



Closure under concatenation

I Let N1 recognize L1 and let N2 recognize L2
I Start with the two smaller NFAs

I Add an ε transition between N1’s accept
state(s) and N2’s start state

I Accept states in N1 are no longer accept states
(we have to accept in N2)

38 / 41



Closure under concatenation

I Let N1 recognize L1 and let N2 recognize L2
I Start with the two smaller NFAs

I Add an ε transition between N1’s accept
state(s) and N2’s start state

I Accept states in N1 are no longer accept states
(we have to accept in N2)

38 / 41



Closure under concatenation

I Let N1 recognize L1 and let N2 recognize L2
I Start with the two smaller NFAs

I Add an ε transition between N1’s accept
state(s) and N2’s start state

I Accept states in N1 are no longer accept states
(we have to accept in N2)

38 / 41



Closure under concatenation

39 / 41



Closure under Kleene star

I Let N1 recognize L1
I Start with the smaller NFA

I Add ε transitions from each accept state back
to the start state

I Add an new start state with an ε transition to
the original start state

I This new start state will also be an accept state

40 / 41



Closure under Kleene star

I Let N1 recognize L1

I Start with the smaller NFA

I Add ε transitions from each accept state back
to the start state

I Add an new start state with an ε transition to
the original start state

I This new start state will also be an accept state

40 / 41



Closure under Kleene star

I Let N1 recognize L1
I Start with the smaller NFA

I Add ε transitions from each accept state back
to the start state

I Add an new start state with an ε transition to
the original start state

I This new start state will also be an accept state

40 / 41



Closure under Kleene star

I Let N1 recognize L1
I Start with the smaller NFA

I Add ε transitions from each accept state back
to the start state

I Add an new start state with an ε transition to
the original start state

I This new start state will also be an accept state

40 / 41



Closure under Kleene star

I Let N1 recognize L1
I Start with the smaller NFA

I Add ε transitions from each accept state back
to the start state

I Add an new start state with an ε transition to
the original start state

I This new start state will also be an accept state

40 / 41



Closure under Kleene star

I Let N1 recognize L1
I Start with the smaller NFA

I Add ε transitions from each accept state back
to the start state

I Add an new start state with an ε transition to
the original start state
I This new start state will also be an accept state

40 / 41



Closure under Kleene star

41 / 41


