
Non-regular Languages

Arjun Chandrasekhar

1 / 29

Regular languages

Show that the following language is regular

{0n1n|n 2 N} = {✏, 01, 0011, 000111, . . . }

I You may construct a DFA, NFA, or a regex to
recognize the language

2 / 29

Non-regular languages

I Are DFAs an all-purpose computing device?
Can DFAs be used to recognize every language?

I How do we show that a particular langauge
cannot be recognized by any DFA?
I We certainly can’t exhaustively check every

possible DFA...

3 / 29

Non-regular languages

I Are DFAs an all-purpose computing device?
Can DFAs be used to recognize every language?

I How do we show that a particular langauge
cannot be recognized by any DFA?
I We certainly can’t exhaustively check every

possible DFA...

3 / 29

Repeated states

How many symbols can we read before we are
forced to repeat a state?

q0 q1 q2 q3

1

0

1

0

0

1

0, 1

4 symbols

4 / 29

Repeated states

How many symbols can we read before we are
forced to repeat a state?

q0 q1 q2 q3

1

0

1

0

0

1

0, 1

4 symbols

4 / 29

Repeated states

How many symbols can we read before we are
forced to repeat a state?

q0 q1 q2

0

1

0

1

0

1

3 symbols

5 / 29

Repeated states

How many symbols can we read before we are
forced to repeat a state?

q0 q1 q2

0

1

0

1

0

1

3 symbols

5 / 29

Repeated states
How many characters can we read before we are
forced to repeat a state?
I Let D be a DFA with n states
I Let w be a string with at least n characters
I Proposition: When we read w , we will repeat

a state
I Proof:

I We visit starting state without reading a character
I After reading n characters, we visit n more states
I n states in the DFA, n + 1 total states visited
I At least one visited state is a repeat (pigeonhole

principle)

6 / 29

Pumping lemma illustration
What strings are accepted by the following DFA?
(Ignore missing transitions)

q0 q1 q2

q3q4

q5
a a

b

b

c

d

Can pass through the
loop any number of
times before accepting

I aad

I aabbcd

I aabbcbbcd

I aabbcbbc ...bbc| {z }
(bbc)n

d

7 / 29

The Pumping Lemma

I Let D = (Q,⌃, �, qs , ✏) be a DFA that
recognizes language L

I Given a string s 2 L:
I If |s| >= |Q|, then when D processes s, it must

visit one (or more) state(s) more than once

I Let’s consider the implications of one state
being visited twice.

8 / 29

Pumping Lemma Idea
What strings are accepted by this DFA?

I xz

I xyz

I xyyz

I xy ...y|{z}
yn

z

9 / 29

The Pumping Lemma (informal statement

I Let L be a regular language.
I Let s 2 L be a string that is “su�ciently long”
I Can split s into three parts s = xyz such that:

I The prefix xy is not “too long”
I The middle part y is not empty
I We can add (or remove) any number of copies of

y , and the new string will still be in the language

10 / 29

The Pumping Lemma

Lemma: Let L be a regular language. There exists
a pumping length p such that for all w 2 L, if
|w | � p, then w may be divided up into three parts
w = xyz such that:

1. |xy |  p

2. |y | > 0

3. xy iz 2 L for all i 2 N

11 / 29

The Pumping Lemma
Proof idea:
I If L is regular, it is recognized by a DFA.
I If we take a su�ciently long string in the

language, the DFA will visit the same state
twice (thus forming a loop) before accepting.

I In principle, we don’t need to go around the
loop just once; we could ‘pump’ around the
loop any number of times (or not at all) before
going to the accept state.

I Thus, the “middle” (i.e. loop) part of the
string can be pumped to make other strings
that are accepted

12 / 29

The Pumping Lemma
Proof:
I Let M be a DFA recognizing L. Let p = |Q|

i.e. number of states
I Let s = s1s2...sn 2 L have length n � p
I Let r1r2 . . . rn+1 be the states visited when

processing s. Note that n + 1 � p + 1
I In the first p + 1 states, there must be a

repeated state rj = rl with j < l  p + 1
(pigeonhole principle)

I Let x = s1 . . . sj�1, y = sj . . . sl�1, z = sl . . . sn.
Then |y | > 0, |xy |  p, and xy iz will be
accepted for all i

13 / 29

Pumping Lemma and Finite Languages

I All finite languages are regular.
I But the pumping lemma says every string in a

regular language should be infinitely pumpable.
I Is this a contradiction?

14 / 29

Pumping Lemma and Finite Languages

I The pumping lemma states that every string of
length � p should be infinitely pumpable.
I We are not on the hook for any strings of length

< p
I For any finite language L, let N be the length

of the longest string. Pick p = N + 1
I L does not contain a string of length � p that is

not pumpable.
I Thus the pumping lemma is satisfied.

15 / 29

Using the Pumping Lemma

Why is the pumping lemma useful?
I The pumping lemma says that if L is regular,

then L has a pumping length p
I The contrapositive is that if L does not

have a valid pumping length, it cannot
possibly regular.

16 / 29

Pumping Lemma Example
Proposition: Let L = {0n1n|n � 0}. L is not a
regular language.
I AFSOC L is regular with pumping length p
I Take w = 0p1p = 0...0|{z}

p

1...1|{z}
p

2 L.

I Clearly |w | � p, so it should be pumpable
I Let w = xyz with |xy |  p and |y | > 0

I w = 0..0|{z}
x

00...0| {z }
y

00...1...1| {z }
z

I y is not empty, xy only contains 0s

I If we pump y , the 0s and 1s won’t be equal
I w 2 L is not pumpable, which contradicts the

pumping lemma. We conclude L is not regular

17 / 29

The Pumping Lemma Example

18 / 29

The Pumping Lemma as a 2-player game
Another way to interpret the pumping lemma is as a
two player game

1. Player 1 claims L is regular, and declares a
pumping length p

2. Player 2 picks a string w 2 L with length at
least p

3. Player 1 splits up w = xyz such that |xy |  p
and |y | > 0

4. Player 2 tries to create a string w 0 /2 L by
pumping y up or down

5. If Player 2 wins if s/he can pump to create a
string w 0 /2 L. Otherwise, Player 1 wins

20 / 29

The Pumping Lemma as a 2-player game

Another way to interpret the pumping lemma is as a
two player game
I If L is regular, there exists a pumping length p

such that Player 1 can always win
I There is always a valid way to split up any string of

length � p such that pumping won’t cause a
problem

I If L is not regular, Player 2 can win for every
possible p
I For any p, there exists a string w 2 L with length

� p that cannot be pumped no matter how it is
split up

21 / 29

The pumping lemma
Proposition: Let L = {0n1n|n � 0}. L is not a
regular language.

1. Player 1 claims L is regular and declares a
pumping length p

2. Player 2 picks w = 0p1p

3. Player 1 splits up w = xyz according to the
pumping lemma rules

4. No matter how Player 1 splits up w , Player 2
can pump up or down to make the 0s and 1s
unequal

5. Player 2 will win for every p, so we conclude L
is not regular.

22 / 29

Pumping Lemma Example
Let ⌃ = {0, 1}. Let’s prove that L =
{wwR |w 2 ⌃⇤} (i.e. a string followed by the reverse
of that string) is not regular
I AFSOC L is regular with pumping length p
I Let w = 0p1p1p0p = 0...0|{z}

p

1...1|{z}
p

1...1|{z}
p

0...0|{z}
p

2 L

I Split up w = xyz such that |y | > 0 and
|xy |  p
I w = 0...0|{z}

x

0...0|{z}
y

0..01...11...10...0| {z }
z

I If we pump y , the leading 0s won’t equal the
trailing 0s

I w 2 L is not pumpable; conclude L is not
regular

23 / 29

Pumping Lemma Example

24 / 29

Pumping Lemma Example
Let ⌃ = {a, b}. Let’s prove that L = {aibj |i � j} is
not regular
I AFSOC L is regular with pumping length p
I Let w = apbp = a...a|{z}

p

b...b|{z}
p

2 L

I Split up w = xyz such that |y | > 0 and
|xy |  p
I w = a...a|{z}

x

a...a|{z}
y

a..ab...b| {z }
z

I y is not empty, xy contains all a’s

I If we pump up, we...still have more a’s than b’s
I xy 2z = a...a|{z}

x

a...aa...a| {z }
y2

a..ab...b| {z }
z

25 / 29

Pumping Lemma Example
Let ⌃ = {a, b}. Let’s prove that L = {aibj |i � j} is
not regular
I AFSOC L is regular with pumping length p
I Let w = apbp = a...a|{z}

p

b...b|{z}
p

2 L

I Split up w = xyz such that |y | > 0 and
|xy |  p
I w = a...a|{z}

x

a...a|{z}
y

a..ab...b| {z }
z

I y is not empty, xy contains all a’s

I If we pump up, we...still have more a’s than b’s
I xy 2z = a...a|{z}

x

a...aa...a| {z }
y2

a..ab...b| {z }
z

25 / 29

Pumping Lemma Example
Let ⌃ = {a, b}. Let’s prove that L = {aibj |i � j} is
not regular
I AFSOC L is regular with pumping length p
I Let w = apbp = a...a|{z}

p

b...b|{z}
p

2 L

I Split up w = xyz such that |y | > 0 and
|xy |  p
I w = a...a|{z}

x

a...a|{z}
y

a..ab...b| {z }
z

I y is not empty, xy contains all a’s
I If we pump down, we have fewer a’s than b’s

I xy 0z = a...a|{z}
x

a..ab...b| {z }
zI w 2 L is not pumpable, conclude L is not

regular
25 / 29

Pumping Lemma Example

26 / 29

Pumping Lemma Example
Let ⌃ = {0, 1,+,=}. Consider the following
language:

ADD = {i+j=k | i, j, k are binary numbers,
equation is valid}

Which of the following strings are in the language?

A) 1100+11=1111

X

B) 1001+0000=0110

Numbers don’t add up

C) 1111+0=1111

X

D) 001=111+111=000

Wrong format

27 / 29

Pumping Lemma Example
Let ⌃ = {0, 1,+,=}. Consider the following
language:

ADD = {i+j=k | i, j, k are binary numbers,
equation is valid}

Which of the following strings are in the language?

A) 1100+11=1111 X

B) 1001+0000=0110
Numbers don’t add up

C) 1111+0=1111 X

D) 001=111+111=000
Wrong format

27 / 29

Pumping Lemma Example
Let’s prove that ADD is not regular
I AFSOC ADD is regular with pumping length p
I Choose 1...1|{z}

p

+0=1...1|{z}
p

I Split w into xyz such that |y | > 0 and
|xy |  p
I 1...1|{z}

x

1...1|{z}
y

1...1 + 0 = 1...1| {z }
z

I y is not empty, xy contains all 1’s

I When we pump y, the 1’s are unequal, and the
numbers won’t add up

I w 2 L is not pumpable, conclude L is not
regular

28 / 29

Pumping Lemma Example

29 / 29

