
Theory of Computation
Poly-time reductions,

NP-completeness

1 / 39



The million dollar question

“What is the largest group of Facebook users that
are all connected to each other”

I Can you write an efficient algorithm to answer
this question?

I Can you prove that no efficient algorithm
exists for this problem?

2 / 39



The million dollar question

“What is the largest group of Facebook users that
are all connected to each other”

I Can you write an efficient algorithm to answer
this question?

I Can you prove that no efficient algorithm
exists for this problem?

2 / 39



The million dollar question

“What is the largest group of Facebook users that
are all connected to each other”

I Can you write an efficient algorithm to answer
this question?

I Can you prove that no efficient algorithm
exists for this problem?

2 / 39



Poly-time computable functions

I Recall: A function f : Σ∗ → Σ∗ is
computable if there is a Turing machine M
that computes it

I If we start with w on the tape, M will halt leave
f (w) on the tape

I Def: a computable function f is poly-time
computable if M runs in polynomial time

3 / 39



Poly-time computable functions

I Recall: A function f : Σ∗ → Σ∗ is
computable if there is a Turing machine M
that computes it

I If we start with w on the tape, M will halt leave
f (w) on the tape

I Def: a computable function f is poly-time
computable if M runs in polynomial time

3 / 39



Poly-time computable functions

I Recall: A function f : Σ∗ → Σ∗ is
computable if there is a Turing machine M
that computes it
I If we start with w on the tape, M will halt leave

f (w) on the tape

I Def: a computable function f is poly-time
computable if M runs in polynomial time

3 / 39



Poly-time computable functions

I Recall: A function f : Σ∗ → Σ∗ is
computable if there is a Turing machine M
that computes it
I If we start with w on the tape, M will halt leave

f (w) on the tape

I Def: a computable function f is poly-time
computable if M runs in polynomial time

3 / 39



Poly-time reductions

I Recall: We say A ≤M B if there is a
computable function f : Σ∗ → Σ∗ such that
w ∈ A⇔ f (w) ∈ B

I “YES maps to YES”
I “NO maps to NO”

I Def: We say A is poly-time reducible to B
(denoted A ≤poly B) if the reduction f is
poly-time computable

I Informally, it means that we can “convert” an
instance of A to an instance of B in polynomial
time

4 / 39



Poly-time reductions

I Recall: We say A ≤M B if there is a
computable function f : Σ∗ → Σ∗ such that
w ∈ A⇔ f (w) ∈ B

I “YES maps to YES”
I “NO maps to NO”

I Def: We say A is poly-time reducible to B
(denoted A ≤poly B) if the reduction f is
poly-time computable

I Informally, it means that we can “convert” an
instance of A to an instance of B in polynomial
time

4 / 39



Poly-time reductions

I Recall: We say A ≤M B if there is a
computable function f : Σ∗ → Σ∗ such that
w ∈ A⇔ f (w) ∈ B
I “YES maps to YES”

I “NO maps to NO”

I Def: We say A is poly-time reducible to B
(denoted A ≤poly B) if the reduction f is
poly-time computable

I Informally, it means that we can “convert” an
instance of A to an instance of B in polynomial
time

4 / 39



Poly-time reductions

I Recall: We say A ≤M B if there is a
computable function f : Σ∗ → Σ∗ such that
w ∈ A⇔ f (w) ∈ B
I “YES maps to YES”
I “NO maps to NO”

I Def: We say A is poly-time reducible to B
(denoted A ≤poly B) if the reduction f is
poly-time computable

I Informally, it means that we can “convert” an
instance of A to an instance of B in polynomial
time

4 / 39



Poly-time reductions

I Recall: We say A ≤M B if there is a
computable function f : Σ∗ → Σ∗ such that
w ∈ A⇔ f (w) ∈ B
I “YES maps to YES”
I “NO maps to NO”

I Def: We say A is poly-time reducible to B
(denoted A ≤poly B) if the reduction f is
poly-time computable

I Informally, it means that we can “convert” an
instance of A to an instance of B in polynomial
time

4 / 39



Poly-time reductions

I Recall: We say A ≤M B if there is a
computable function f : Σ∗ → Σ∗ such that
w ∈ A⇔ f (w) ∈ B
I “YES maps to YES”
I “NO maps to NO”

I Def: We say A is poly-time reducible to B
(denoted A ≤poly B) if the reduction f is
poly-time computable

I Informally, it means that we can “convert” an
instance of A to an instance of B in polynomial
time

4 / 39



Poly-time reductions

5 / 39



Implications of poly-time reducibility

Theorem: If B ∈ P and A ≤poly B , then A ∈ P

I Since B ∈ P, there is a machine MB that
decides B in poly-time

I Since A ≤poly B there is a poly-time
computable function f such that
w ∈ A⇔ f (w) ∈ B

I Create the following machine poly-time MA to
decide A

1. Compute f (w) (poly-time)
2. Run MB on f (w) (poly-time)
3. If MB accepts f (w) then MA accepts w .

Otherwise, MA rejects w .

6 / 39



Implications of poly-time reducibility

Theorem: If B ∈ P and A ≤poly B , then A ∈ P

I Since B ∈ P, there is a machine MB that
decides B in poly-time

I Since A ≤poly B there is a poly-time
computable function f such that
w ∈ A⇔ f (w) ∈ B

I Create the following machine poly-time MA to
decide A

1. Compute f (w) (poly-time)
2. Run MB on f (w) (poly-time)
3. If MB accepts f (w) then MA accepts w .

Otherwise, MA rejects w .

6 / 39



Implications of poly-time reducibility

Theorem: If B ∈ P and A ≤poly B , then A ∈ P

I Since B ∈ P, there is a machine MB that
decides B in poly-time

I Since A ≤poly B there is a poly-time
computable function f such that
w ∈ A⇔ f (w) ∈ B

I Create the following machine poly-time MA to
decide A

1. Compute f (w) (poly-time)
2. Run MB on f (w) (poly-time)
3. If MB accepts f (w) then MA accepts w .

Otherwise, MA rejects w .

6 / 39



Implications of poly-time reducibility

Theorem: If B ∈ P and A ≤poly B , then A ∈ P

I Since B ∈ P, there is a machine MB that
decides B in poly-time

I Since A ≤poly B there is a poly-time
computable function f such that
w ∈ A⇔ f (w) ∈ B

I Create the following machine poly-time MA to
decide A

1. Compute f (w) (poly-time)
2. Run MB on f (w) (poly-time)
3. If MB accepts f (w) then MA accepts w .

Otherwise, MA rejects w .

6 / 39



Implications of poly-time reducibility

Theorem: If B ∈ P and A ≤poly B , then A ∈ P

I Since B ∈ P, there is a machine MB that
decides B in poly-time

I Since A ≤poly B there is a poly-time
computable function f such that
w ∈ A⇔ f (w) ∈ B

I Create the following machine poly-time MA to
decide A

1. Compute f (w) (poly-time)

2. Run MB on f (w) (poly-time)
3. If MB accepts f (w) then MA accepts w .

Otherwise, MA rejects w .

6 / 39



Implications of poly-time reducibility

Theorem: If B ∈ P and A ≤poly B , then A ∈ P

I Since B ∈ P, there is a machine MB that
decides B in poly-time

I Since A ≤poly B there is a poly-time
computable function f such that
w ∈ A⇔ f (w) ∈ B

I Create the following machine poly-time MA to
decide A

1. Compute f (w) (poly-time)
2. Run MB on f (w) (poly-time)

3. If MB accepts f (w) then MA accepts w .
Otherwise, MA rejects w .

6 / 39



Implications of poly-time reducibility

Theorem: If B ∈ P and A ≤poly B , then A ∈ P

I Since B ∈ P, there is a machine MB that
decides B in poly-time

I Since A ≤poly B there is a poly-time
computable function f such that
w ∈ A⇔ f (w) ∈ B

I Create the following machine poly-time MA to
decide A

1. Compute f (w) (poly-time)
2. Run MB on f (w) (poly-time)
3. If MB accepts f (w) then MA accepts w .

Otherwise, MA rejects w .

6 / 39



Implications of polytime-reducibility

7 / 39



IND-SET ≤poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

8 / 39



IND-SET ≤poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

8 / 39



IND-SET ≤poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

8 / 39



IND-SET ≤poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

8 / 39



IND-SET ≤poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

8 / 39



IND-SET ≤poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

8 / 39



IND-SET ≤poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

Poly-time: O(E ) to construct G

8 / 39



IND-SET ≤poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

“YES maps to YES”: If G has a k-independent
set, then those same vertices will all be connected in
G

8 / 39



IND-SET ≤poly CLIQUE
We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

“NO maps to NO”: If G doesn’t have a
k-independent set, then every set of k vertices has
at least one edge. Those same vertices will be
missing an edge in G

8 / 39



IND-SET ≤poly CLIQUE

We reduce from IND-SET to CLIQUE as follows:

1. Input: A graph G with V vertices and E
edges, and an integer k

2. Create the complement graph G by reversing
all of the edges in G

3. Check if G has a clique of size k . If so, accept
〈G , k〉; otherwise reject

8 / 39



3-SAT ≤poly IND-SET

We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x ∨ y ∨ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39



3-SAT ≤poly IND-SET

We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x ∨ y ∨ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39



3-SAT ≤poly IND-SET

We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x ∨ y ∨ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39



3-SAT ≤poly IND-SET

We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x ∨ y ∨ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39



3-SAT ≤poly IND-SET

We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x ∨ y ∨ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39



3-SAT ≤poly IND-SET

We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x ∨ y ∨ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39



3-SAT ≤poly IND-SET

We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x ∨ y ∨ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39



3-SAT ≤poly IND-SET
We reduce from IND-SET to CLIQUE as follows:

1. Input: a 3-CNF formula with n variables and
m clauses

2. Create a graph G

3. For each clause (x ∨ y ∨ z), create three nodes
x , y , z and connect them to form a “triangle”

4. If there are nodes x and ¬x , connect them
with an edge

5. Check if there is an independent set of size m

9 / 39



3-SAT ≤poly IND-SET: poly-time

I O(m) vertices

I O(m) + O(n2) edges
I O(m) + O(n2) = poly-time

10 / 39



3-SAT ≤poly IND-SET: poly-time

I O(m) vertices
I O(m) + O(n2) edges

I O(m) + O(n2) = poly-time

10 / 39



3-SAT ≤poly IND-SET: poly-time

I O(m) vertices
I O(m) + O(n2) edges
I O(m) + O(n2) = poly-time

10 / 39



3-SAT ≤poly IND-SET: yes → yes

I Suppose F has a satisfying assignment
I For each “triangle”, pick one of the TRUE

vertices to be in the independent set

I Every clause has at least one true variable
I Variables from different clauses are not connected
I Truth assignment will not let us pick x and ¬x

I m clauses → m triangles → m-independent set

11 / 39



3-SAT ≤poly IND-SET: yes → yes

I Suppose F has a satisfying assignment

I For each “triangle”, pick one of the TRUE
vertices to be in the independent set

I Every clause has at least one true variable
I Variables from different clauses are not connected
I Truth assignment will not let us pick x and ¬x

I m clauses → m triangles → m-independent set

11 / 39



3-SAT ≤poly IND-SET: yes → yes

I Suppose F has a satisfying assignment
I For each “triangle”, pick one of the TRUE

vertices to be in the independent set

I Every clause has at least one true variable
I Variables from different clauses are not connected
I Truth assignment will not let us pick x and ¬x

I m clauses → m triangles → m-independent set

11 / 39



3-SAT ≤poly IND-SET: yes → yes

I Suppose F has a satisfying assignment
I For each “triangle”, pick one of the TRUE

vertices to be in the independent set
I Every clause has at least one true variable

I Variables from different clauses are not connected
I Truth assignment will not let us pick x and ¬x

I m clauses → m triangles → m-independent set

11 / 39



3-SAT ≤poly IND-SET: yes → yes

I Suppose F has a satisfying assignment
I For each “triangle”, pick one of the TRUE

vertices to be in the independent set
I Every clause has at least one true variable
I Variables from different clauses are not connected

I Truth assignment will not let us pick x and ¬x
I m clauses → m triangles → m-independent set

11 / 39



3-SAT ≤poly IND-SET: yes → yes

I Suppose F has a satisfying assignment
I For each “triangle”, pick one of the TRUE

vertices to be in the independent set
I Every clause has at least one true variable
I Variables from different clauses are not connected
I Truth assignment will not let us pick x and ¬x

I m clauses → m triangles → m-independent set

11 / 39



3-SAT ≤poly IND-SET: yes → yes

I Suppose F has a satisfying assignment
I For each “triangle”, pick one of the TRUE

vertices to be in the independent set
I Every clause has at least one true variable
I Variables from different clauses are not connected
I Truth assignment will not let us pick x and ¬x

I m clauses → m triangles → m-independent set

11 / 39



3-SAT ≤poly IND-SET: no → no

Show the contrapositive: yes ← yes

I Suppose G has a an independent set of size m
I Set the variables that are part of the

independent set to be TRUE

I There must be one vertex from each “triangle” in
the set, so every clause will be satisfied

I x and ¬x are connected, so our independent set
will not include a contradictory assignment

12 / 39



3-SAT ≤poly IND-SET: no → no

Show the contrapositive: yes ← yes

I Suppose G has a an independent set of size m
I Set the variables that are part of the

independent set to be TRUE

I There must be one vertex from each “triangle” in
the set, so every clause will be satisfied

I x and ¬x are connected, so our independent set
will not include a contradictory assignment

12 / 39



3-SAT ≤poly IND-SET: no → no

Show the contrapositive: yes ← yes
I Suppose G has a an independent set of size m

I Set the variables that are part of the
independent set to be TRUE

I There must be one vertex from each “triangle” in
the set, so every clause will be satisfied

I x and ¬x are connected, so our independent set
will not include a contradictory assignment

12 / 39



3-SAT ≤poly IND-SET: no → no

Show the contrapositive: yes ← yes
I Suppose G has a an independent set of size m
I Set the variables that are part of the

independent set to be TRUE

I There must be one vertex from each “triangle” in
the set, so every clause will be satisfied

I x and ¬x are connected, so our independent set
will not include a contradictory assignment

12 / 39



3-SAT ≤poly IND-SET: no → no

Show the contrapositive: yes ← yes
I Suppose G has a an independent set of size m
I Set the variables that are part of the

independent set to be TRUE
I There must be one vertex from each “triangle” in

the set, so every clause will be satisfied

I x and ¬x are connected, so our independent set
will not include a contradictory assignment

12 / 39



3-SAT ≤poly IND-SET: no → no

Show the contrapositive: yes ← yes
I Suppose G has a an independent set of size m
I Set the variables that are part of the

independent set to be TRUE
I There must be one vertex from each “triangle” in

the set, so every clause will be satisfied
I x and ¬x are connected, so our independent set

will not include a contradictory assignment 12 / 39



NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L

I A ∈ NP =⇒ A ≤poly L

I Def: L is NP-complete if:

1. L ∈ NP
2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39



NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L

I A ∈ NP =⇒ A ≤poly L

I Def: L is NP-complete if:

1. L ∈ NP
2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39



NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L
I A ∈ NP =⇒ A ≤poly L

I Def: L is NP-complete if:

1. L ∈ NP
2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39



NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L
I A ∈ NP =⇒ A ≤poly L

I Def: L is NP-complete if:

1. L ∈ NP
2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39



NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L
I A ∈ NP =⇒ A ≤poly L

I Def: L is NP-complete if:
1. L ∈ NP

2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39



NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L
I A ∈ NP =⇒ A ≤poly L

I Def: L is NP-complete if:
1. L ∈ NP
2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39



NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L
I A ∈ NP =⇒ A ≤poly L

I Def: L is NP-complete if:
1. L ∈ NP
2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39



NP-completeness

I Def: A language L is NP-Hard if every
language in NP is poly-time reducible to L
I A ∈ NP =⇒ A ≤poly L

I Def: L is NP-complete if:
1. L ∈ NP
2. L is NP-Hard

I L is the “hardest” or “most expressive”
problem in NP

13 / 39



3-SAT is NP-complete

Cook-Levin theorem: CIRCUIT− SAT is
NP-complete

I Like 3-SAT, but we can use any combination
of ¬,∨,∧

I Proof idea: create a boolean circuit that
checks if the input string eventually leads to an
accepting computation history

Karp’s theorem: 3-SAT is NP-complete

I Every boolean circuit can be converted to a
3-CNF circuit

See Sipser for full proof

14 / 39



3-SAT is NP-complete
Cook-Levin theorem: CIRCUIT− SAT is
NP-complete

I Like 3-SAT, but we can use any combination
of ¬,∨,∧

I Proof idea: create a boolean circuit that
checks if the input string eventually leads to an
accepting computation history

Karp’s theorem: 3-SAT is NP-complete

I Every boolean circuit can be converted to a
3-CNF circuit

See Sipser for full proof

14 / 39



3-SAT is NP-complete
Cook-Levin theorem: CIRCUIT− SAT is
NP-complete

I Like 3-SAT, but we can use any combination
of ¬,∨,∧

I Proof idea: create a boolean circuit that
checks if the input string eventually leads to an
accepting computation history

Karp’s theorem: 3-SAT is NP-complete

I Every boolean circuit can be converted to a
3-CNF circuit

See Sipser for full proof

14 / 39



3-SAT is NP-complete
Cook-Levin theorem: CIRCUIT− SAT is
NP-complete

I Like 3-SAT, but we can use any combination
of ¬,∨,∧

I Proof idea: create a boolean circuit that
checks if the input string eventually leads to an
accepting computation history

Karp’s theorem: 3-SAT is NP-complete

I Every boolean circuit can be converted to a
3-CNF circuit

See Sipser for full proof

14 / 39



3-SAT is NP-complete
Cook-Levin theorem: CIRCUIT− SAT is
NP-complete

I Like 3-SAT, but we can use any combination
of ¬,∨,∧

I Proof idea: create a boolean circuit that
checks if the input string eventually leads to an
accepting computation history

Karp’s theorem: 3-SAT is NP-complete

I Every boolean circuit can be converted to a
3-CNF circuit

See Sipser for full proof

14 / 39



3-SAT is NP-complete
Cook-Levin theorem: CIRCUIT− SAT is
NP-complete

I Like 3-SAT, but we can use any combination
of ¬,∨,∧

I Proof idea: create a boolean circuit that
checks if the input string eventually leads to an
accepting computation history

Karp’s theorem: 3-SAT is NP-complete

I Every boolean circuit can be converted to a
3-CNF circuit

See Sipser for full proof

14 / 39



3-SAT is NP-complete
Cook-Levin theorem: CIRCUIT− SAT is
NP-complete

I Like 3-SAT, but we can use any combination
of ¬,∨,∧

I Proof idea: create a boolean circuit that
checks if the input string eventually leads to an
accepting computation history

Karp’s theorem: 3-SAT is NP-complete

I Every boolean circuit can be converted to a
3-CNF circuit

See Sipser for full proof

14 / 39



3-SAT is NP-complete

15 / 39



Transitivity of ≤poly

Proposition: If A ≤poly B and B ≤poly C , then
A ≤poly C

I There exists a poly-time computable function f
such that w ∈ A⇔ f (w) ∈ B

I There exists a poly-time computable function g
such that w ∈ B ⇔ g(w) ∈ C

I w ∈ A⇔ f (w) ∈ B ⇔ g(f (w)) ∈ C

I g ◦ f is a poly-time reduction from A to C !

16 / 39



Transitivity of ≤poly

Proposition: If A ≤poly B and B ≤poly C , then
A ≤poly C

I There exists a poly-time computable function f
such that w ∈ A⇔ f (w) ∈ B

I There exists a poly-time computable function g
such that w ∈ B ⇔ g(w) ∈ C

I w ∈ A⇔ f (w) ∈ B ⇔ g(f (w)) ∈ C

I g ◦ f is a poly-time reduction from A to C !

16 / 39



Transitivity of ≤poly

Proposition: If A ≤poly B and B ≤poly C , then
A ≤poly C

I There exists a poly-time computable function f
such that w ∈ A⇔ f (w) ∈ B

I There exists a poly-time computable function g
such that w ∈ B ⇔ g(w) ∈ C

I w ∈ A⇔ f (w) ∈ B ⇔ g(f (w)) ∈ C

I g ◦ f is a poly-time reduction from A to C !

16 / 39



Transitivity of ≤poly

Proposition: If A ≤poly B and B ≤poly C , then
A ≤poly C

I There exists a poly-time computable function f
such that w ∈ A⇔ f (w) ∈ B

I There exists a poly-time computable function g
such that w ∈ B ⇔ g(w) ∈ C

I w ∈ A⇔ f (w) ∈ B ⇔ g(f (w)) ∈ C

I g ◦ f is a poly-time reduction from A to C !

16 / 39



Transitivity of ≤poly

Proposition: If A ≤poly B and B ≤poly C , then
A ≤poly C

I There exists a poly-time computable function f
such that w ∈ A⇔ f (w) ∈ B

I There exists a poly-time computable function g
such that w ∈ B ⇔ g(w) ∈ C

I w ∈ A⇔ f (w) ∈ B ⇔ g(f (w)) ∈ C

I g ◦ f is a poly-time reduction from A to C !

16 / 39



Transitivity of ≤poly

Proposition: If A ≤poly B and B ≤poly C , then
A ≤poly C

I There exists a poly-time computable function f
such that w ∈ A⇔ f (w) ∈ B

I There exists a poly-time computable function g
such that w ∈ B ⇔ g(w) ∈ C

I w ∈ A⇔ f (w) ∈ B ⇔ g(f (w)) ∈ C

I g ◦ f is a poly-time reduction from A to C !

16 / 39



Transitivity of ≤poly

17 / 39



Transitivity of NP-Completeness

Corollary: If A is NP-complete, and A ≤poly B ,
then B is NP-complete

18 / 39



Transitivity of NP-Completeness
Corollary: If A is NP-complete, and A ≤poly B ,
then B is NP-complete

18 / 39



Transitivity of NP-Completeness
Corollary: If A is NP-complete, and A ≤poly B ,
then B is NP-complete

18 / 39



Implications of 3-SAT NP-Completeness

I We can use 3-SAT to prove that other
languages are NP-complete!

I If we can show that 3-SAT ≤poly L, it follows that
L is also complete!

I And we can use those other languages to show
that even more languages are NP-complete

19 / 39



Implications of 3-SAT NP-Completeness

I We can use 3-SAT to prove that other
languages are NP-complete!

I If we can show that 3-SAT ≤poly L, it follows that
L is also complete!

I And we can use those other languages to show
that even more languages are NP-complete

19 / 39



Implications of 3-SAT NP-Completeness

I We can use 3-SAT to prove that other
languages are NP-complete!
I If we can show that 3-SAT ≤poly L, it follows that

L is also complete!

I And we can use those other languages to show
that even more languages are NP-complete

19 / 39



Implications of 3-SAT NP-Completeness

I We can use 3-SAT to prove that other
languages are NP-complete!
I If we can show that 3-SAT ≤poly L, it follows that

L is also complete!

I And we can use those other languages to show
that even more languages are NP-complete

19 / 39



Implications of 3-SAT NP-Completeness

20 / 39



IND-SET is NP-Complete

I 3-SAT is known to be NP-complete
I We proved that 3-SAT ≤poly IND-SET
I Thus, IND-SET is NP-complete

21 / 39



IND-SET is NP-Complete
I 3-SAT is known to be NP-complete

I We proved that 3-SAT ≤poly IND-SET
I Thus, IND-SET is NP-complete

21 / 39



IND-SET is NP-Complete
I 3-SAT is known to be NP-complete
I We proved that 3-SAT ≤poly IND-SET

I Thus, IND-SET is NP-complete

21 / 39



IND-SET is NP-Complete
I 3-SAT is known to be NP-complete
I We proved that 3-SAT ≤poly IND-SET
I Thus, IND-SET is NP-complete

21 / 39



IND-SET is NP-Complete
I 3-SAT is known to be NP-complete
I We proved that 3-SAT ≤poly IND-SET
I Thus, IND-SET is NP-complete

21 / 39



CLIQUE is NP-Complete

I IND-SET is known to be NP-Complete
I We proved that IND-SET ≤poly CLIQUE
I Thus, CLIQUE is NP-Complete

22 / 39



CLIQUE is NP-Complete
I IND-SET is known to be NP-Complete

I We proved that IND-SET ≤poly CLIQUE
I Thus, CLIQUE is NP-Complete

22 / 39



CLIQUE is NP-Complete
I IND-SET is known to be NP-Complete
I We proved that IND-SET ≤poly CLIQUE

I Thus, CLIQUE is NP-Complete

22 / 39



CLIQUE is NP-Complete
I IND-SET is known to be NP-Complete
I We proved that IND-SET ≤poly CLIQUE
I Thus, CLIQUE is NP-Complete

22 / 39



CLIQUE is NP-Complete
I IND-SET is known to be NP-Complete
I We proved that IND-SET ≤poly CLIQUE
I Thus, CLIQUE is NP-Complete

22 / 39



SUBSET-SUM is NP-Complete

Proof: Reduce from 3-SAT

1. We will create a number for each variable xi
and its negation

I The digits of the number correspond to which
clauses that variable can satisfy

2. We will set the target sum such that it can only
be reached through a satisfying assignment

I To reach the target, each clause needs to have at
least of its true

3. We will set the desired sum such that each
clause needs to satisfied

23 / 39



SUBSET-SUM is NP-Complete

Proof: Reduce from 3-SAT

1. We will create a number for each variable xi
and its negation

I The digits of the number correspond to which
clauses that variable can satisfy

2. We will set the target sum such that it can only
be reached through a satisfying assignment

I To reach the target, each clause needs to have at
least of its true

3. We will set the desired sum such that each
clause needs to satisfied

23 / 39



SUBSET-SUM is NP-Complete

Proof: Reduce from 3-SAT
1. We will create a number for each variable xi

and its negation

I The digits of the number correspond to which
clauses that variable can satisfy

2. We will set the target sum such that it can only
be reached through a satisfying assignment

I To reach the target, each clause needs to have at
least of its true

3. We will set the desired sum such that each
clause needs to satisfied

23 / 39



SUBSET-SUM is NP-Complete

Proof: Reduce from 3-SAT
1. We will create a number for each variable xi

and its negation
I The digits of the number correspond to which

clauses that variable can satisfy

2. We will set the target sum such that it can only
be reached through a satisfying assignment

I To reach the target, each clause needs to have at
least of its true

3. We will set the desired sum such that each
clause needs to satisfied

23 / 39



SUBSET-SUM is NP-Complete

Proof: Reduce from 3-SAT
1. We will create a number for each variable xi

and its negation
I The digits of the number correspond to which

clauses that variable can satisfy

2. We will set the target sum such that it can only
be reached through a satisfying assignment

I To reach the target, each clause needs to have at
least of its true

3. We will set the desired sum such that each
clause needs to satisfied

23 / 39



SUBSET-SUM is NP-Complete

Proof: Reduce from 3-SAT
1. We will create a number for each variable xi

and its negation
I The digits of the number correspond to which

clauses that variable can satisfy

2. We will set the target sum such that it can only
be reached through a satisfying assignment
I To reach the target, each clause needs to have at

least of its true

3. We will set the desired sum such that each
clause needs to satisfied

23 / 39



SUBSET-SUM is NP-Complete

Proof: Reduce from 3-SAT
1. We will create a number for each variable xi

and its negation
I The digits of the number correspond to which

clauses that variable can satisfy

2. We will set the target sum such that it can only
be reached through a satisfying assignment
I To reach the target, each clause needs to have at

least of its true

3. We will set the desired sum such that each
clause needs to satisfied

23 / 39



3-SAT ≤poly SUBSET-SUM: variables

I We want our numbers to correspond to
assigning each variable to TRUE or FALSE

I For each variable xi , we will create two
numbers: xTRUE

i and xFALSE
i

I We will design our desired total so that exactly
one of these two numbers must be picked

24 / 39



3-SAT ≤poly SUBSET-SUM: variables

I We want our numbers to correspond to
assigning each variable to TRUE or FALSE

I For each variable xi , we will create two
numbers: xTRUEi and xFALSEi

I We will design our desired total so that exactly
one of these two numbers must be picked

24 / 39



3-SAT ≤poly SUBSET-SUM: variables

I We want our numbers to correspond to
assigning each variable to TRUE or FALSE

I For each variable xi , we will create two
numbers: xTRUE

i and xFALSE
i

I We will design our desired total so that exactly
one of these two numbers must be picked

24 / 39



3-SAT ≤poly SUBSET-SUM: variables

I We want our numbers to correspond to
assigning each variable to TRUE or FALSE

I For each variable xi , we will create two
numbers: xTRUE

i and xFALSE
i

I We will design our desired total so that exactly
one of these two numbers must be picked

24 / 39



3-SAT ≤poly SUBSET-SUM: variables

25 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I We want our numbers to correspond to
satisfying certain clauses

I For each number, we will add an extra digit for
each clause

I The extra digits signifiy which variables satisfy
which clauses

I We will design our desired total so that (at
least) one variable must be picked for each
clause

26 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I We want our numbers to correspond to
satisfying certain clauses

I For each number, we will add an extra digit for
each clause

I The extra digits signifiy which variables satisfy
which clauses

I We will design our desired total so that (at
least) one variable must be picked for each
clause

26 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I We want our numbers to correspond to
satisfying certain clauses

I For each number, we will add an extra digit for
each clause

I The extra digits signifiy which variables satisfy
which clauses

I We will design our desired total so that (at
least) one variable must be picked for each
clause

26 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I We want our numbers to correspond to
satisfying certain clauses

I For each number, we will add an extra digit for
each clause
I The extra digits signifiy which variables satisfy

which clauses

I We will design our desired total so that (at
least) one variable must be picked for each
clause

26 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I We want our numbers to correspond to
satisfying certain clauses

I For each number, we will add an extra digit for
each clause
I The extra digits signifiy which variables satisfy

which clauses

I We will design our desired total so that (at
least) one variable must be picked for each
clause

26 / 39



3-SAT ≤poly SUBSET-SUM: clauses

27 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I How do we design our target B so that each
clause must be satisfied?

I Attempt 1: Include a 1 digit for each clause

I Problem: What if a clause has more than one
TRUE variable?

I Attempt 2: Include a 3 digit for each clause

I Problem: A satisfied clause might have only 1 or
2 TRUE variables

I How do we represent “between 1 and 3” when
subset sum requires an exact total?

I We will introduce filler numbers

28 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I How do we design our target B so that each
clause must be satisfied?

I Attempt 1: Include a 1 digit for each clause

I Problem: What if a clause has more than one
TRUE variable?

I Attempt 2: Include a 3 digit for each clause

I Problem: A satisfied clause might have only 1 or
2 TRUE variables

I How do we represent “between 1 and 3” when
subset sum requires an exact total?

I We will introduce filler numbers

28 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I How do we design our target B so that each
clause must be satisfied?

I Attempt 1: Include a 1 digit for each clause

I Problem: What if a clause has more than one
TRUE variable?

I Attempt 2: Include a 3 digit for each clause

I Problem: A satisfied clause might have only 1 or
2 TRUE variables

I How do we represent “between 1 and 3” when
subset sum requires an exact total?

I We will introduce filler numbers

28 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I How do we design our target B so that each
clause must be satisfied?

I Attempt 1: Include a 1 digit for each clause
I Problem: What if a clause has more than one

TRUE variable?

I Attempt 2: Include a 3 digit for each clause

I Problem: A satisfied clause might have only 1 or
2 TRUE variables

I How do we represent “between 1 and 3” when
subset sum requires an exact total?

I We will introduce filler numbers

28 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I How do we design our target B so that each
clause must be satisfied?

I Attempt 1: Include a 1 digit for each clause
I Problem: What if a clause has more than one

TRUE variable?

I Attempt 2: Include a 3 digit for each clause

I Problem: A satisfied clause might have only 1 or
2 TRUE variables

I How do we represent “between 1 and 3” when
subset sum requires an exact total?

I We will introduce filler numbers

28 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I How do we design our target B so that each
clause must be satisfied?

I Attempt 1: Include a 1 digit for each clause
I Problem: What if a clause has more than one

TRUE variable?

I Attempt 2: Include a 3 digit for each clause
I Problem: A satisfied clause might have only 1 or

2 TRUE variables

I How do we represent “between 1 and 3” when
subset sum requires an exact total?

I We will introduce filler numbers

28 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I How do we design our target B so that each
clause must be satisfied?

I Attempt 1: Include a 1 digit for each clause
I Problem: What if a clause has more than one

TRUE variable?

I Attempt 2: Include a 3 digit for each clause
I Problem: A satisfied clause might have only 1 or

2 TRUE variables

I How do we represent “between 1 and 3” when
subset sum requires an exact total?

I We will introduce filler numbers

28 / 39



3-SAT ≤poly SUBSET-SUM: clauses

I How do we design our target B so that each
clause must be satisfied?

I Attempt 1: Include a 1 digit for each clause
I Problem: What if a clause has more than one

TRUE variable?

I Attempt 2: Include a 3 digit for each clause
I Problem: A satisfied clause might have only 1 or

2 TRUE variables

I How do we represent “between 1 and 3” when
subset sum requires an exact total?

I We will introduce filler numbers

28 / 39



3-SAT ≤poly SUBSET-SUM: fillers

I For each clause, introduce two fillers

I From a given clause, if at least one variable is
TRUE, we can use up to two fillers to bring
the total for that clause to 3

I If all variables in a clause are FALSE, then
that clause will never add up to 3 (even with
the fillers)

29 / 39



3-SAT ≤poly SUBSET-SUM: fillers

I For each clause, introduce two fillers

I From a given clause, if at least one variable is
TRUE, we can use up to two fillers to bring
the total for that clause to 3

I If all variables in a clause are FALSE, then
that clause will never add up to 3 (even with
the fillers)

29 / 39



3-SAT ≤poly SUBSET-SUM: fillers

I For each clause, introduce two fillers

I From a given clause, if at least one variable is
TRUE, we can use up to two fillers to bring
the total for that clause to 3

I If all variables in a clause are FALSE, then
that clause will never add up to 3 (even with
the fillers)

29 / 39



3-SAT ≤poly SUBSET-SUM: fillers

I For each clause, introduce two fillers

I From a given clause, if at least one variable is
TRUE, we can use up to two fillers to bring
the total for that clause to 3

I If all variables in a clause are FALSE, then
that clause will never add up to 3 (even with
the fillers)

29 / 39



3-SAT ≤poly SUBSET-SUM: fillers

30 / 39



3-SAT ≤poly SUBSET-SUM

31 / 39



3-SAT ≤poly SUBSET-SUM: poly-time

I O(n) “variable” numbers

I O(m) “filler” numbers

I Each number has O(n + m) base-10 digits

I (O(n) + O(m)) · O(n + m) = poly-time
I Note: The length of the numbers would be

exponential if we used a unary encoding

I If we could find a poly-time reduction that uses
unary, we would have proven that P = NP

32 / 39



3-SAT ≤poly SUBSET-SUM: poly-time

I O(n) “variable” numbers

I O(m) “filler” numbers

I Each number has O(n + m) base-10 digits

I (O(n) + O(m)) · O(n + m) = poly-time
I Note: The length of the numbers would be

exponential if we used a unary encoding

I If we could find a poly-time reduction that uses
unary, we would have proven that P = NP

32 / 39



3-SAT ≤poly SUBSET-SUM: poly-time

I O(n) “variable” numbers

I O(m) “filler” numbers

I Each number has O(n + m) base-10 digits

I (O(n) + O(m)) · O(n + m) = poly-time
I Note: The length of the numbers would be

exponential if we used a unary encoding

I If we could find a poly-time reduction that uses
unary, we would have proven that P = NP

32 / 39



3-SAT ≤poly SUBSET-SUM: poly-time

I O(n) “variable” numbers

I O(m) “filler” numbers

I Each number has O(n + m) base-10 digits

I (O(n) + O(m)) · O(n + m) = poly-time
I Note: The length of the numbers would be

exponential if we used a unary encoding

I If we could find a poly-time reduction that uses
unary, we would have proven that P = NP

32 / 39



3-SAT ≤poly SUBSET-SUM: poly-time

I O(n) “variable” numbers

I O(m) “filler” numbers

I Each number has O(n + m) base-10 digits

I (O(n) + O(m)) · O(n + m) = poly-time

I Note: The length of the numbers would be
exponential if we used a unary encoding

I If we could find a poly-time reduction that uses
unary, we would have proven that P = NP

32 / 39



3-SAT ≤poly SUBSET-SUM: poly-time

I O(n) “variable” numbers

I O(m) “filler” numbers

I Each number has O(n + m) base-10 digits

I (O(n) + O(m)) · O(n + m) = poly-time
I Note: The length of the numbers would be

exponential if we used a unary encoding

I If we could find a poly-time reduction that uses
unary, we would have proven that P = NP

32 / 39



3-SAT ≤poly SUBSET-SUM: poly-time

I O(n) “variable” numbers

I O(m) “filler” numbers

I Each number has O(n + m) base-10 digits

I (O(n) + O(m)) · O(n + m) = poly-time
I Note: The length of the numbers would be

exponential if we used a unary encoding
I If we could find a poly-time reduction that uses

unary, we would have proven that P = NP

32 / 39



3-SAT ≤poly SUBSET-SUM: yes → yes
“YES maps to YES”:

I Suppose F has a satisfying assignment

I If xi is assigned TRUE, include xTRUE
i in our

subset. Otherwise, include xFALSE
i

I A variable and its negation will never both be
assigned TRUE, so we have a 1 in the first n
positions of B

I Each clause is satisfied, so we have at least 1 in
the last m positions of B

I Can use up to 2 fillers to get a 3 in the last m
positions of B

33 / 39



3-SAT ≤poly SUBSET-SUM: yes → yes
“YES maps to YES”:

I Suppose F has a satisfying assignment

I If xi is assigned TRUE, include xTRUEi in our
subset. Otherwise, include xFALSEi

I A variable and its negation will never both be
assigned TRUE, so we have a 1 in the first n
positions of B

I Each clause is satisfied, so we have at least 1 in
the last m positions of B

I Can use up to 2 fillers to get a 3 in the last m
positions of B

33 / 39



3-SAT ≤poly SUBSET-SUM: yes → yes
“YES maps to YES”:

I Suppose F has a satisfying assignment

I If xi is assigned TRUE, include xTRUE
i in our

subset. Otherwise, include xFALSE
i

I A variable and its negation will never both be
assigned TRUE, so we have a 1 in the first n
positions of B

I Each clause is satisfied, so we have at least 1 in
the last m positions of B

I Can use up to 2 fillers to get a 3 in the last m
positions of B

33 / 39



3-SAT ≤poly SUBSET-SUM: yes → yes
“YES maps to YES”:

I Suppose F has a satisfying assignment

I If xi is assigned TRUE, include xTRUE
i in our

subset. Otherwise, include xFALSE
i

I A variable and its negation will never both be
assigned TRUE, so we have a 1 in the first n
positions of B

I Each clause is satisfied, so we have at least 1 in
the last m positions of B

I Can use up to 2 fillers to get a 3 in the last m
positions of B

33 / 39



3-SAT ≤poly SUBSET-SUM: yes → yes
“YES maps to YES”:

I Suppose F has a satisfying assignment

I If xi is assigned TRUE, include xTRUE
i in our

subset. Otherwise, include xFALSE
i

I A variable and its negation will never both be
assigned TRUE, so we have a 1 in the first n
positions of B

I Each clause is satisfied, so we have at least 1 in
the last m positions of B

I Can use up to 2 fillers to get a 3 in the last m
positions of B

33 / 39



3-SAT ≤poly SUBSET-SUM: yes → yes
“YES maps to YES”:

I Suppose F has a satisfying assignment

I If xi is assigned TRUE, include xTRUE
i in our

subset. Otherwise, include xFALSE
i

I A variable and its negation will never both be
assigned TRUE, so we have a 1 in the first n
positions of B

I Each clause is satisfied, so we have at least 1 in
the last m positions of B

I Can use up to 2 fillers to get a 3 in the last m
positions of B

33 / 39



3-SAT ≤poly SUBSET-SUM: no → no

“NO maps to NO”:

I Suppose F is unsatisfiable

I Every satisfying assignment will leave at least
one clause unsatisfied

I One of the last m digits of our subset will add
up to at most 2

I Without at least one TRUE variable, we don’t
have enough fillers to make that clause add up to 3

34 / 39



3-SAT ≤poly SUBSET-SUM: no → no

“NO maps to NO”:

I Suppose F is unsatisfiable

I Every satisfying assignment will leave at least
one clause unsatisfied

I One of the last m digits of our subset will add
up to at most 2

I Without at least one TRUE variable, we don’t
have enough fillers to make that clause add up to 3

34 / 39



3-SAT ≤poly SUBSET-SUM: no → no

“NO maps to NO”:

I Suppose F is unsatisfiable

I Every satisfying assignment will leave at least
one clause unsatisfied

I One of the last m digits of our subset will add
up to at most 2

I Without at least one TRUE variable, we don’t
have enough fillers to make that clause add up to 3

34 / 39



3-SAT ≤poly SUBSET-SUM: no → no

“NO maps to NO”:

I Suppose F is unsatisfiable

I Every satisfying assignment will leave at least
one clause unsatisfied

I One of the last m digits of our subset will add
up to at most 2

I Without at least one TRUE variable, we don’t
have enough fillers to make that clause add up to 3

34 / 39



3-SAT ≤poly SUBSET-SUM: no → no

“NO maps to NO”:

I Suppose F is unsatisfiable

I Every satisfying assignment will leave at least
one clause unsatisfied

I One of the last m digits of our subset will add
up to at most 2
I Without at least one TRUE variable, we don’t

have enough fillers to make that clause add up to 3

34 / 39



3-SAT ≤poly SUBSET-SUM: no → no

Alternately, we can prove the contrapositive: yes ←
yes

I Suppose there exists a subset that adds up to B

I Assign all of the variables that are part of the
subset to be TRUE

I Because the first n digits of B are 1, we won’t
have a variable and its negation both be TRUE

I Because the last m digits of B are all 3, and
there are only 2 fillers per clause, at least one
variable is TRUE in each clause

35 / 39



3-SAT ≤poly SUBSET-SUM: no → no

Alternately, we can prove the contrapositive: yes ←
yes

I Suppose there exists a subset that adds up to B

I Assign all of the variables that are part of the
subset to be TRUE

I Because the first n digits of B are 1, we won’t
have a variable and its negation both be TRUE

I Because the last m digits of B are all 3, and
there are only 2 fillers per clause, at least one
variable is TRUE in each clause

35 / 39



3-SAT ≤poly SUBSET-SUM: no → no

Alternately, we can prove the contrapositive: yes ←
yes

I Suppose there exists a subset that adds up to B

I Assign all of the variables that are part of the
subset to be TRUE

I Because the first n digits of B are 1, we won’t
have a variable and its negation both be TRUE

I Because the last m digits of B are all 3, and
there are only 2 fillers per clause, at least one
variable is TRUE in each clause

35 / 39



3-SAT ≤poly SUBSET-SUM: no → no

Alternately, we can prove the contrapositive: yes ←
yes

I Suppose there exists a subset that adds up to B

I Assign all of the variables that are part of the
subset to be TRUE

I Because the first n digits of B are 1, we won’t
have a variable and its negation both be TRUE

I Because the last m digits of B are all 3, and
there are only 2 fillers per clause, at least one
variable is TRUE in each clause

35 / 39



3-SAT ≤poly SUBSET-SUM: no → no

Alternately, we can prove the contrapositive: yes ←
yes

I Suppose there exists a subset that adds up to B

I Assign all of the variables that are part of the
subset to be TRUE

I Because the first n digits of B are 1, we won’t
have a variable and its negation both be TRUE

I Because the last m digits of B are all 3, and
there are only 2 fillers per clause, at least one
variable is TRUE in each clause

35 / 39



P vs. NP

36 / 39



P vs. NP

36 / 39



P vs. NP

36 / 39



The million dollar question

Can you design an efficient algorithm to find the
biggest clique on Facebook?

I If you can do this, then P = NP

I If you believe that P 6= NP, then this task is
impossible

There is a million dollar bounty on the answer
to this question!

37 / 39



The million dollar question

Can you design an efficient algorithm to find the
biggest clique on Facebook?

I If you can do this, then P = NP

I If you believe that P 6= NP, then this task is
impossible

There is a million dollar bounty on the answer
to this question!

37 / 39



The million dollar question

Can you design an efficient algorithm to find the
biggest clique on Facebook?

I If you can do this, then P = NP

I If you believe that P 6= NP, then this task is
impossible

There is a million dollar bounty on the answer
to this question!

37 / 39



The million dollar question

Can you design an efficient algorithm to find the
biggest clique on Facebook?

I If you can do this, then P = NP

I If you believe that P 6= NP, then this task is
impossible

There is a million dollar bounty on the answer
to this question!

37 / 39



The million dollar question

Can you design an efficient algorithm to find the
biggest clique on Facebook?

I If you can do this, then P = NP

I If you believe that P 6= NP, then this task is
impossible

There is a million dollar bounty on the answer
to this question!

37 / 39



Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP

I L ∈ co-NP⇔ Lc ∈ NP

I It is easy to verify if w /∈ L

I Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)

I Some open questions:

I Does NP = co-NP?
I Does P = NP ∩ co-NP (similar to how decidable

= RE ∩ co-RE)?

38 / 39



Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP

I L ∈ co-NP⇔ Lc ∈ NP

I It is easy to verify if w /∈ L

I Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)

I Some open questions:

I Does NP = co-NP?
I Does P = NP ∩ co-NP (similar to how decidable

= RE ∩ co-RE)?

38 / 39



Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP

I L ∈ co-NP⇔ Lc ∈ NP

I It is easy to verify if w /∈ L

I Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)

I Some open questions:

I Does NP = co-NP?
I Does P = NP ∩ co-NP (similar to how decidable

= RE ∩ co-RE)?

38 / 39



Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP

I L ∈ co-NP⇔ Lc ∈ NP

I It is easy to verify if w /∈ L

I Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)

I Some open questions:

I Does NP = co-NP?
I Does P = NP ∩ co-NP (similar to how decidable

= RE ∩ co-RE)?

38 / 39



Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP

I L ∈ co-NP⇔ Lc ∈ NP

I It is easy to verify if w /∈ L

I Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)

I Some open questions:

I Does NP = co-NP?
I Does P = NP ∩ co-NP (similar to how decidable

= RE ∩ co-RE)?

38 / 39



Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP

I L ∈ co-NP⇔ Lc ∈ NP

I It is easy to verify if w /∈ L

I Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)

I Some open questions:

I Does NP = co-NP?
I Does P = NP ∩ co-NP (similar to how decidable

= RE ∩ co-RE)?

38 / 39



Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP

I L ∈ co-NP⇔ Lc ∈ NP

I It is easy to verify if w /∈ L

I Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)

I Some open questions:
I Does NP = co-NP?

I Does P = NP ∩ co-NP (similar to how decidable
= RE ∩ co-RE)?

38 / 39



Beyond P vs. NP: the class co-NP

Def: The class co-NP is the set of languages whose
complement is in NP

I L ∈ co-NP⇔ Lc ∈ NP

I It is easy to verify if w /∈ L

I Example: it is very easy to prove that a
number is not prime (but harder to prove that
it is prime)

I Some open questions:
I Does NP = co-NP?
I Does P = NP ∩ co-NP (similar to how decidable

= RE ∩ co-RE)?

38 / 39



Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory

I Space complexity is calculated based on how
many extra tape squares are needed to process
the input

I Key insight: Unlike time, space can be reused
I Some open questions:

I Does P = PSPACE?
I Does NP = PSPACE?
I Does PSPACE = EXP?

39 / 39



Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory

I Space complexity is calculated based on how
many extra tape squares are needed to process
the input

I Key insight: Unlike time, space can be reused
I Some open questions:

I Does P = PSPACE?
I Does NP = PSPACE?
I Does PSPACE = EXP?

39 / 39



Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory

I Space complexity is calculated based on how
many extra tape squares are needed to process
the input

I Key insight: Unlike time, space can be reused
I Some open questions:

I Does P = PSPACE?
I Does NP = PSPACE?
I Does PSPACE = EXP?

39 / 39



Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory

I Space complexity is calculated based on how
many extra tape squares are needed to process
the input

I Key insight: Unlike time, space can be reused

I Some open questions:

I Does P = PSPACE?
I Does NP = PSPACE?
I Does PSPACE = EXP?

39 / 39



Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory

I Space complexity is calculated based on how
many extra tape squares are needed to process
the input

I Key insight: Unlike time, space can be reused
I Some open questions:

I Does P = PSPACE?
I Does NP = PSPACE?
I Does PSPACE = EXP?

39 / 39



Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory

I Space complexity is calculated based on how
many extra tape squares are needed to process
the input

I Key insight: Unlike time, space can be reused
I Some open questions:

I Does P = PSPACE?

I Does NP = PSPACE?
I Does PSPACE = EXP?

39 / 39



Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory

I Space complexity is calculated based on how
many extra tape squares are needed to process
the input

I Key insight: Unlike time, space can be reused
I Some open questions:

I Does P = PSPACE?
I Does NP = PSPACE?

I Does PSPACE = EXP?

39 / 39



Beyond P vs. NP: the class PSPACE

Def: The class PSPACE is the set of languages
that can be decided using polynomial
space/memory

I Space complexity is calculated based on how
many extra tape squares are needed to process
the input

I Key insight: Unlike time, space can be reused
I Some open questions:

I Does P = PSPACE?
I Does NP = PSPACE?
I Does PSPACE = EXP?

39 / 39


