Theory of Computation Poly-time reductions, NP-completeness

The million dollar question

"What is the largest group of Facebook users that are all connected to each other"

The million dollar question

"What is the largest group of Facebook users that are all connected to each other"

Can you write an *efficient* algorithm to answer this question?

The million dollar question

"What is the largest group of Facebook users that are all connected to each other"

- Can you write an *efficient* algorithm to answer this question?
- Can you prove that no efficient algorithm exists for this problem?

3 / 39

Recall: A function f : Σ* → Σ* is computable if there is a Turing machine M that computes it

- Recall: A function f : Σ* → Σ* is computable if there is a Turing machine M that computes it
 - If we start with w on the tape, M will halt leave f(w) on the tape

- Recall: A function f : Σ* → Σ* is computable if there is a Turing machine M that computes it
 - If we start with w on the tape, M will halt leave f(w) on the tape
- Def: a computable function f is poly-time computable if M runs in polynomial time

4 / 39

• **Recall:** We say
$$A \leq_M B$$
 if there is a computable function $f : \Sigma^* \to \Sigma^*$ such that $w \in A \Leftrightarrow f(w) \in B$

• **Recall:** We say
$$A \leq_M B$$
 if there is a computable function $f : \Sigma^* \to \Sigma^*$ such that $w \in A \Leftrightarrow f(w) \in B$

"YES maps to YES"

- **Recall:** We say $A \leq_M B$ if there is a computable function $f : \Sigma^* \to \Sigma^*$ such that $w \in A \Leftrightarrow f(w) \in B$
 - "YES maps to YES"

"NO maps to NO"

- **Recall:** We say $A \leq_M B$ if there is a computable function $f : \Sigma^* \to \Sigma^*$ such that $w \in A \Leftrightarrow f(w) \in B$
 - "YES maps to YES"

"NO maps to NO"

▶ Def: We say A is poly-time reducible to B (denoted A ≤_{poly} B) if the reduction f is poly-time computable

- **Recall:** We say $A \leq_M B$ if there is a computable function $f : \Sigma^* \to \Sigma^*$ such that $w \in A \Leftrightarrow f(w) \in B$
 - "YES maps to YES"

"NO maps to NO"

- ▶ Def: We say A is poly-time reducible to B (denoted A ≤_{poly} B) if the reduction f is poly-time computable
- Informally, it means that we can "convert" an instance of A to an instance of B in polynomial time

Implications of poly-time reducibility Theorem: If $B \in P$ and $A \leq_{poly} B$, then $A \in P$

6

Theorem: If $B \in P$ and $A \leq_{poly} B$, then $A \in P$

► Since B ∈ P, there is a machine M_B that decides B in poly-time

Theorem: If $B \in P$ and $A \leq_{poly} B$, then $A \in P$

- ► Since B ∈ P, there is a machine M_B that decides B in poly-time
- Since A ≤_{poly} B there is a poly-time computable function f such that w ∈ A ⇔ f(w) ∈ B

Theorem: If $B \in P$ and $A \leq_{poly} B$, then $A \in P$

- ► Since B ∈ P, there is a machine M_B that decides B in poly-time
- Since $A \leq_{\text{poly}} B$ there is a poly-time computable function f such that $w \in A \Leftrightarrow f(w) \in B$
- Create the following machine poly-time M_A to decide A

Theorem: If $B \in P$ and $A \leq_{poly} B$, then $A \in P$

- ► Since B ∈ P, there is a machine M_B that decides B in poly-time
- Since A ≤_{poly} B there is a poly-time computable function f such that w ∈ A ⇔ f(w) ∈ B
- Create the following machine poly-time M_A to decide A

1. Compute f(w) (poly-time)

Theorem: If $B \in P$ and $A \leq_{poly} B$, then $A \in P$

- ► Since B ∈ P, there is a machine M_B that decides B in poly-time
- Since $A \leq_{\text{poly}} B$ there is a poly-time computable function f such that $w \in A \Leftrightarrow f(w) \in B$
- Create the following machine poly-time M_A to decide A
 - 1. Compute f(w) (poly-time)
 - 2. Run M_B on f(w) (poly-time)

Theorem: If $B \in P$ and $A \leq_{poly} B$, then $A \in P$

- ► Since B ∈ P, there is a machine M_B that decides B in poly-time
- Since A ≤_{poly} B there is a poly-time computable function f such that w ∈ A ⇔ f(w) ∈ B
- Create the following machine poly-time M_A to decide A
 - 1. Compute f(w) (poly-time)
 - 2. Run M_B on f(w) (poly-time)
 - 3. If M_B accepts f(w) then M_A accepts w. Otherwise, M_A rejects w.

If we can decide B in poly-time, we can decide A in poly-time

We reduce from $\ensuremath{\operatorname{IND-SET}}$ to $\ensuremath{\operatorname{CLIQUE}}$ as follows:

We reduce from $\ensuremath{\operatorname{IND-SET}}$ to $\ensuremath{\operatorname{CLIQUE}}$ as follows:

1. **Input:** A graph G with V vertices and E edges, and an integer k

We reduce from $\ensuremath{\operatorname{IND-SET}}$ to $\ensuremath{\operatorname{CLIQUE}}$ as follows:

- 1. **Input:** A graph G with V vertices and E edges, and an integer k
- 2. Create the **complement graph** \overline{G} by reversing all of the edges in G

We reduce from $\ensuremath{\operatorname{IND-SET}}$ to $\ensuremath{\operatorname{CLIQUE}}$ as follows:

- 1. **Input:** A graph G with V vertices and E edges, and an integer k
- 2. Create the **complement graph** \overline{G} by reversing all of the edges in G
- 3. Check if \overline{G} has a clique of size k. If so, accept $\langle G, k \rangle$; otherwise reject

IND-SET $\leq_{\text{poly}} \text{CLIQUE}$

We reduce from $\ensuremath{\operatorname{IND-SET}}$ to $\ensuremath{\operatorname{CLIQUE}}$ as follows:

- 1. **Input:** A graph G with V vertices and E edges, and an integer k
- 2. Create the **complement graph** \overline{G} by reversing all of the edges in G
- 3. Check if \overline{G} has a clique of size k. If so, accept $\langle G, k \rangle$; otherwise reject

Poly-time: O(E) to construct \overline{G}

We reduce from $\operatorname{IND-SET}$ to CLIQUE as follows:

- 1. Input: A graph G with V vertices and E edges, and an integer k
- 2. Create the **complement graph** \overline{G} by reversing all of the edges in G
- 3. Check if \overline{G} has a clique of size k. If so, accept $\langle G, k \rangle$; otherwise reject

"YES maps to YES": If G has a k-independent set, then those same vertices will all be connected in \overline{G}

We reduce from $\ensuremath{\operatorname{IND-SET}}$ to $\ensuremath{\operatorname{CLIQUE}}$ as follows:

- 1. **Input:** A graph G with V vertices and E edges, and an integer k
- 2. Create the **complement graph** \overline{G} by reversing all of the edges in G
- 3. Check if \overline{G} has a clique of size k. If so, accept $\langle G, k \rangle$; otherwise reject

"NO maps to NO": If G doesn't have a k-independent set, then every set of k vertices has at least one edge. Those same vertices will be missing an edge in \overline{G}

If we can decide CLIQUE in poly-time, we can decide IND-SET in poly-time

$3\text{-SAT} \leq_{\text{poly}} \text{IND-SET}$

We reduce from $\ensuremath{\operatorname{IND-SET}}$ to $\ensuremath{\operatorname{CLIQUE}}$ as follows:

 $3\text{-SAT} \leq_{\text{poly}} \text{IND-SET}$

We reduce from $\operatorname{IND-SET}$ to CLIQUE as follows:

1. **Input:** a 3-CNF formula with *n* variables and *m* clauses
- 1. **Input:** a 3-CNF formula with *n* variables and *m* clauses
- 2. Create a graph G

- 1. **Input:** a 3-CNF formula with *n* variables and *m* clauses
- 2. Create a graph G
- 3. For each clause $(x \lor y \lor z)$, create three nodes x, y, z and connect them to form a "triangle"

- 1. **Input:** a 3-CNF formula with *n* variables and *m* clauses
- 2. Create a graph G
- 3. For each clause $(x \lor y \lor z)$, create three nodes x, y, z and connect them to form a "triangle"
- 4. If there are nodes x and $\neg x$, connect them with an edge

- 1. **Input:** a 3-CNF formula with *n* variables and *m* clauses
- 2. Create a graph G
- 3. For each clause $(x \lor y \lor z)$, create three nodes x, y, z and connect them to form a "triangle"
- 4. If there are nodes x and $\neg x$, connect them with an edge
- 5. Check if there is an independent set of size m

 $3\text{-SAT} \leq_{\text{poly}} \text{IND-SET}$

We reduce from IND-SET to CLIQUE as follows:

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

$3\text{-SAT} \leq_{\text{poly}} \text{IND-SET: poly-time}$

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

$3\text{-SAT} \leq_{\text{poly}} \text{IND-SET: poly-time}$

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

O(*m*) vertices *O*(*m*) + *O*(*n*²) edges

$3\text{-SAT} \leq_{\text{poly}} \text{IND-SET: poly-time}$

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

O(m) vertices
 O(m) + O(n²) edges
 O(m) + O(n²) = poly-time

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

Suppose F has a satisfying assignment

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

Suppose F has a satisfying assignment
 For each "triangle", pick one of the TRUE vertices to be in the independent set

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

Suppose F has a satisfying assignment
 For each "triangle", pick one of the TRUE vertices to be in the independent set

Every clause has at least one true variable

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

- Suppose F has a satisfying assignment
 For each "triangle", pick one of the TRUE vertices to be in the independent set
 - Every clause has at least one true variable
 - Variables from different clauses are not connected

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

- Suppose F has a satisfying assignment
 For each "triangle", pick one of the TRUE vertices to be in the independent set
 - Every clause has at least one true variable
 - Variables from different clauses are not connected
 - Truth assignment will not let us pick x and $\neg x$

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

- Suppose F has a satisfying assignment
 For each "triangle", pick one of the TRUE vertices to be in the independent set
 - Every clause has at least one true variable
 - Variables from different clauses are not connected

► Truth assignment will not let us pick x and ¬x

• m clauses $\rightarrow m$ triangles \rightarrow m-independent set

 $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_2} \vee x_4)$

 $(x_1 \lor x_2 \lor \overline{x_3}) \land (x_2 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor \overline{x_2} \lor x_4)$

Show the contrapositive: yes \leftarrow yes

 $(x_1 \lor x_2 \lor \overline{x_3}) \land (x_2 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor \overline{x_2} \lor x_4)$

Show the contrapositive: $\underline{yes} \leftarrow \underline{yes}$ Suppose *G* has a an independent set of size *m*

 $(x_1 \lor x_2 \lor \overline{x_3}) \land (x_2 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor \overline{x_2} \lor x_4)$

Show the contrapositive: yes \leftarrow yes

Suppose G has a an independent set of size m
 Set the variables that are part of the independent set to be TRUE

 $(x_1 \lor x_2 \lor \overline{x_3}) \land (x_2 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor \overline{x_2} \lor x_4)$

Show the contrapositive: yes \leftarrow yes

- Suppose G has a an independent set of size m
 Set the variables that are part of the independent set to be TRUE
 - There must be one vertex from each "triangle" in the set, so every clause will be satisfied

 $(x_1 \lor x_2 \lor \overline{x_3}) \land (x_2 \lor x_3 \lor \overline{x_4}) \land (x_1 \lor \overline{x_2} \lor x_4)$

Show the contrapositive: yes \leftarrow yes

- Suppose G has a an independent set of size m
 Set the variables that are part of the independent set to be TRUE
 - There must be one vertex from each "triangle" in the set, so every clause will be satisfied
 - x and ¬x are connected, so our independent set will not include a contradictory assignment 12 / 39

Def: A language L is NP-Hard if every language in NP is poly-time reducible to L

Def: A language *L* is NP-Hard if every language in NP is poly-time reducible to *L* A ∈ NP ⇒ A ≤_{poly} *L*

13

Def: A language L is NP-Hard if every language in NP is poly-time reducible to L
 A ∈ NP ⇒ A ≤_{poly} L
 Def: L is NP-complete if:

Def: A language L is NP-Hard if every language in NP is poly-time reducible to L
A ∈ NP ⇒ A ≤_{poly} L
Def: L is NP-complete if:

L ∈ NP

Def: A language L is NP-Hard if every language in NP is poly-time reducible to L
A ∈ NP ⇒ A ≤_{poly} L
Def: L is NP-complete if:

L ∈ NP
L is NP-Hard

13

Def: A language L is NP-Hard if every language in NP is poly-time reducible to L
A ∈ NP ⇒ A ≤_{poly} L
Def: L is NP-complete if:

L ∈ NP
L is NP-Hard

L is the "hardest" or "most expressive"

problem in NP

If we can decide L in poly-time, we can decide *every* NP language in poly-time!

Cook-Levin theorem: $\operatorname{CIRCUIT}-\operatorname{SAT}$ is NP-complete

Cook-Levin theorem: $\operatorname{CIRCUIT} - \operatorname{SAT}$ is NP-complete

 \blacktriangleright Like 3-SAT, but we can use any combination of \neg, \lor, \land

Cook-Levin theorem: $\operatorname{CIRCUIT} - \operatorname{SAT}$ is NP-complete

- \blacktriangleright Like 3-SAT, but we can use any combination of \neg, \lor, \land
- Proof idea: create a boolean circuit that checks if the input string eventually leads to an accepting computation history

$$14 \, / \, 39$$

Cook-Levin theorem: $\operatorname{CIRCUIT} - \operatorname{SAT}$ is NP-complete

- Like 3-SAT, but we can use any combination of \neg, \lor, \land
- Proof idea: create a boolean circuit that checks if the input string eventually leads to an accepting computation history
- Karp's theorem: 3-SAT is NP-complete

Cook-Levin theorem: $\operatorname{CIRCUIT} - \operatorname{SAT}$ is NP-complete

- \blacktriangleright Like 3-SAT, but we can use any combination of \neg, \lor, \land
- Proof idea: create a boolean circuit that checks if the input string eventually leads to an accepting computation history
- Karp's theorem: 3-SAT is NP-complete
 - Every boolean circuit can be converted to a 3-CNF circuit

Cook-Levin theorem: $\operatorname{CIRCUIT} - \operatorname{SAT}$ is NP-complete

- Like 3-SAT, but we can use any combination of \neg, \lor, \land
- Proof idea: create a boolean circuit that checks if the input string eventually leads to an accepting computation history
- Karp's theorem: 3-SAT is NP-complete
 - Every boolean circuit can be converted to a 3-CNF circuit
- See Sipser for full proof
3-SAT is NP-complete 3-SAT is NP-Complete $A \in NP$

If we can decide 3-SAT in poly-time, we can decide *every* NP language in poly-time!

Proposition: If $A \leq_{poly} B$ and $B \leq_{poly} C$, then $A \leq_{poly} C$

Proposition: If $A \leq_{poly} B$ and $B \leq_{poly} C$, then $A \leq_{poly} C$

There exists a poly-time computable function f such that w ∈ A ⇔ f(w) ∈ B

Proposition: If $A \leq_{poly} B$ and $B \leq_{poly} C$, then $A \leq_{poly} C$

- There exists a poly-time computable function f such that w ∈ A ⇔ f(w) ∈ B
- There exists a poly-time computable function g such that w ∈ B ⇔ g(w) ∈ C

Proposition: If $A \leq_{poly} B$ and $B \leq_{poly} C$, then $A \leq_{poly} C$

- There exists a poly-time computable function f such that w ∈ A ⇔ f(w) ∈ B
- There exists a poly-time computable function g such that w ∈ B ⇔ g(w) ∈ C
- $\blacktriangleright \ w \in A \Leftrightarrow f(w) \in B \Leftrightarrow g(f(w)) \in C$

Proposition: If $A \leq_{poly} B$ and $B \leq_{poly} C$, then $A \leq_{poly} C$

- There exists a poly-time computable function f such that w ∈ A ⇔ f(w) ∈ B
- There exists a poly-time computable function g such that w ∈ B ⇔ g(w) ∈ C

16

- $\blacktriangleright \ w \in A \Leftrightarrow f(w) \in B \Leftrightarrow g(f(w)) \in C$
- $g \circ f$ is a poly-time reduction from A to C!

If we can decide C in poly-time, we can decide A in poly-time

Transitivity of NP-Completeness

Transitivity of NP-Completeness

Corollary: If A is NP-complete, and $A \leq_{poly} B$, then B is NP-complete

Transitivity of NP-Completeness Corollary: If A is NP-complete, and $A \leq_{poly} B$, then B is NP-complete

If we can decide B in poly-time, we can decide *any* language in NP in poly-time!

We can use 3-SAT to prove that other languages are NP-complete!

We can use 3-SAT to prove that other languages are NP-complete!

► If we can show that 3-SAT ≤_{poly} L, it follows that L is also complete!

- We can use 3-SAT to prove that other languages are NP-complete!
 - ► If we can show that 3-SAT ≤_{poly} L, it follows that L is also complete!

19

And we can use those other languages to show that even more languages are NP-complete

▶ 3-SAT is known to be NP-complete

- ▶ 3-SAT is known to be NP-complete
- ▶ We proved that 3-SAT \leq_{poly} IND-SET

21

- ▶ 3-SAT is known to be NP-complete
- ▶ We proved that 3-SAT \leq_{poly} IND-SET

21

► Thus, IND-SET is NP-complete

- ▶ 3-SAT is known to be NP-complete
- ▶ We proved that 3-SAT \leq_{poly} IND-SET
- ► Thus, IND-SET is NP-complete

3-SAT is NP-Complete

3-SAT ≤_{poly} IND-SET L ⊂ NP

If we can decide IND-SET in poly-time, we can decide *any* language in NP in poly-time!

CLIQUE is NP-Complete IND-SET is known to be NP-Complete

- ▶ IND-SET is known to be NP-Complete
- ▶ We proved that IND-SET \leq_{poly} CLIQUE

- ▶ IND-SET is known to be NP-Complete
- ▶ We proved that IND-SET \leq_{poly} CLIQUE
- ► Thus, CLIQUE is NP-Complete

- IND-SET is known to be NP-Complete
- ▶ We proved that IND-SET \leq_{poly} CLIQUE
- ► Thus, CLIQUE is NP-Complete

IND-SET is NP-Complete IND-SET ≤_{poly} CLIQUE

If we can decide CLIQUE in poly-time, we can decide *any* language in NP in poly-time!

Proof: Reduce from 3-SAT

Proof: Reduce from 3-SAT

1. We will create a number for each variable x_i and its negation

Proof: Reduce from 3-SAT

- 1. We will create a number for each variable x_i and its negation
 - The digits of the number correspond to which clauses that variable can satisfy

Proof: Reduce from 3-SAT

- 1. We will create a number for each variable x_i and its negation
 - The digits of the number correspond to which clauses that variable can satisfy
- 2. We will set the target sum such that it can only be reached through a satisfying assignment

Proof: Reduce from 3-SAT

- 1. We will create a number for each variable x_i and its negation
 - The digits of the number correspond to which clauses that variable can satisfy
- 2. We will set the target sum such that it can only be reached through a satisfying assignment
 - To reach the target, each clause needs to have at least of its true

Proof: Reduce from 3-SAT

- 1. We will create a number for each variable x_i and its negation
 - The digits of the number correspond to which clauses that variable can satisfy
- 2. We will set the target sum such that it can only be reached through a satisfying assignment
 - To reach the target, each clause needs to have at least of its true
- 3. We will set the desired sum such that each clause needs to satisfied

$3\text{-SAT} \leq_{\text{poly}} \text{SUBSET-SUM}$: variables

24 / 39

$3\text{-SAT} \leq_{\text{poly}} \text{SUBSET-SUM}$: variables

We want our numbers to correspond to assigning each variable to TRUE or FALSE $3\text{-SAT} \leq_{\text{poly}} \text{SUBSET-SUM}$: variables

- We want our numbers to correspond to assigning each variable to TRUE or FALSE
- For each variable x_i, we will create two numbers: x_i^{TRUE} and x_i^{FALSE}
- We want our numbers to correspond to assigning each variable to TRUE or FALSE
- For each variable x_i, we will create two numbers: x_i^{TRUE} and x_i^{FALSE}
- We will design our desired total so that exactly one of these two numbers must be picked

 $3-SAT \leq_{poly} SUBSET-SUM$: variables $\mathsf{F} = (\mathsf{x}_1 \lor \mathsf{x}_2 \lor \neg \mathsf{x}_3) \land (\neg \mathsf{x}_1 \lor \mathsf{x}_2 \lor \neg \mathsf{x}_3) \land \dots \land (\mathsf{x}_2 \lor \mathsf{x}_3)$ n digits (1 per unique variable) $\begin{cases} x_1^{\text{TRUE}} = 1 & 0 & 0 & 0 & \dots \\ x_1^{\text{FALSE}} = 1 & 0 & 0 & 0 & \dots \\ x_2^{\text{TRUE}} = 0 & 1 & 0 & 0 & \dots \\ x_2^{\text{FALSE}} = 0 & 1 & 0 & 0 & \dots \\ x_3^{\text{TRUE}} = 0 & 0 & 1 & 0 & \dots \\ x_3^{\text{FALSE}} = 0 & 0 & 1 & 0 & \dots \\ \end{cases}$ 0 0 2n numbers 0 (2 per unique 0 variable) 0 $x_n^{\text{TRUE}} = 0 \quad 0 \quad 0 \quad 0 \quad \dots$ $x_n^{\text{FALSE}} = 0 \quad 0 \quad 0 \quad 0 \quad \dots$ Each variable must be TRUE or FALSE в 1 = 1 1 1

 We want our numbers to correspond to satisfying certain clauses

- We want our numbers to correspond to satisfying certain clauses
- For each number, we will add an extra digit for each clause

- We want our numbers to correspond to satisfying certain clauses
- For each number, we will add an extra digit for each clause
 - The extra digits signifive which variables satisfy which clauses

- We want our numbers to correspond to satisfying certain clauses
- For each number, we will add an extra digit for each clause
 - The extra digits signifive which variables satisfy which clauses
- We will design our desired total so that (at least) one variable must be picked for each clause

How do we design our target B so that each clause must be satisfied?

- How do we design our target B so that each clause must be satisfied?
- Attempt 1: Include a 1 digit for each clause

- How do we design our target B so that each clause must be satisfied?
- Attempt 1: Include a 1 digit for each clause
 - Problem: What if a clause has more than one TRUE variable?

- How do we design our target B so that each clause must be satisfied?
- Attempt 1: Include a 1 digit for each clause
 Problem: What if a clause has more than one TRUE variable?
- Attempt 2: Include a 3 digit for each clause

- How do we design our target B so that each clause must be satisfied?
- Attempt 1: Include a 1 digit for each clause
 - Problem: What if a clause has more than one TRUE variable?
- Attempt 2: Include a 3 digit for each clause
 - Problem: A satisfied clause might have only 1 or 2 TRUE variables

- How do we design our target B so that each clause must be satisfied?
- Attempt 1: Include a 1 digit for each clause
 - Problem: What if a clause has more than one TRUE variable?
- Attempt 2: Include a 3 digit for each clause
 - Problem: A satisfied clause might have only 1 or 2 TRUE variables
- How do we represent "between 1 and 3" when subset sum requires an exact total?

- How do we design our target B so that each clause must be satisfied?
- Attempt 1: Include a 1 digit for each clause
 - Problem: What if a clause has more than one TRUE variable?
- Attempt 2: Include a 3 digit for each clause
 - Problem: A satisfied clause might have only 1 or 2 TRUE variables
- How do we represent "between 1 and 3" when subset sum requires an exact total?
- We will introduce **filler numbers**

▶ For each clause, introduce two *fillers*

- ► For each clause, introduce two *fillers*
- From a given clause, if at least one variable is TRUE, we can use up to two fillers to bring the total for that clause to 3

- ► For each clause, introduce two *fillers*
- From a given clause, if at least one variable is TRUE, we can use up to two fillers to bring the total for that clause to 3
- If all variables in a clause are FALSE, then that clause will never add up to 3 (even with the fillers)

 $\mathsf{F} = (\mathsf{x}_1 \lor \mathsf{x}_2 \lor \neg \mathsf{x}_3) \land (\neg \mathsf{x}_1 \lor \mathsf{x}_2 \lor \neg \mathsf{x}_3) \land \dots \land (\mathsf{x}_2 \lor \mathsf{x}_3)$

X ₁ TRU	^E = 1	0	0	0		0	1	0		0
X ₁ FALS	^{SE} = 1	0	0	0		0	0	1		0
x ^{TRUI}	= 0	1	0	0		0	1	1		1
x ₂ FALS	^{SE} = 0	1	0	0		0	0	0		0
X ₃ TRU	= 0	0	1	0		0	0	0		1
x ₃ FALS	^{SE} = 0	0	1	0		0	1	1		0
X _n TRU	= 0	0	0	0		1	0	0		0
x FALS	^E = 0	0	0	0		1	0	0		0
6II						0	4			0
111	= 0	0	0	0		0		0		0
fill ₁₂	= 0 = 0	0	0	0		0	1	0		0
fill ₁₂ fill ₂₁	= 0 = 0 = 0	0 0 0	0 0 0	0 0	 	0 0 0	1 0	0 1	 	0 0
fill ₁₂ fill ₂₁ fill ₂₂	= 0 = 0 = 0 = 0	0 0 0	0 0 0	0 0 0	···· ····	0 0 0	1 0 0	0 1 1	···· ····	0 0 0
fill ₁₂ fill ₂₁ fill ₂₂	= 0 = 0 = 0 = 0	0 0 0	0 0 0	0 0 0	 	0 0 0	1 0 0	0 1 1	···· ····	0 0 0
fill ₁₂ fill ₂₁ fill ₂₂ fill _{m1}	= 0 = 0 = 0 = 0 = 0	0 0 0 0	0 0 0 0	0 0 0 0	 	0 0 0 0	1 0 0	0 1 1	···· ····	0 0 0
fill ₁₂ fill ₂₁ fill ₂₂ fill _{m1}	= 0 = 0 = 0 = 0 = 0 = 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	···· ···· ····	0 0 0 0 0	1 0 0	0 1 1 0 0	···· ····	0 0 0 1 1

32 / 39

\triangleright O(n) "variable" numbers

O(n) "variable" numbers
 O(m) "filler" numbers

- \blacktriangleright O(n) "variable" numbers
- \triangleright O(m) "filler" numbers
- Each number has O(n + m) base-10 digits

- \blacktriangleright O(n) "variable" numbers
- ▶ O(m) "filler" numbers
- Each number has O(n + m) base-10 digits
- $(O(n) + O(m)) \cdot O(n + m) =$ poly-time

$$32 \, / \, 39$$

- O(n) "variable" numbers
- ▶ O(m) "filler" numbers
- Each number has O(n + m) base-10 digits
- $(O(n) + O(m)) \cdot O(n + m) =$ poly-time
- Note: The length of the numbers would be exponential if we used a unary encoding

- \blacktriangleright O(n) "variable" numbers
- ▶ O(m) "filler" numbers
- Each number has O(n + m) base-10 digits
- $(O(n) + O(m)) \cdot O(n + m) =$ poly-time
- Note: The length of the numbers would be exponential if we used a unary encoding
 - If we could find a poly-time reduction that uses unary, we would have proven that P = NP

"YES maps to YES":

"YES maps to YES":

Suppose F has a satisfying assignment

"YES maps to YES":

- Suppose F has a satisfying assignment
- If x_i is assigned TRUE, include x_i^{TRUE} in our subset. Otherwise, include x_i^{FALSE}

"YES maps to YES":

- Suppose F has a satisfying assignment
- If x_i is assigned TRUE, include x_i^{TRUE} in our subset. Otherwise, include x_i^{FALSE}
- A variable and its negation will never both be assigned TRUE, so we have a 1 in the first n positions of B

"YES maps to YES":

- Suppose F has a satisfying assignment
- If x_i is assigned TRUE, include x_i^{TRUE} in our subset. Otherwise, include x_i^{FALSE}
- A variable and its negation will never both be assigned TRUE, so we have a 1 in the first n positions of B
- Each clause is satisfied, so we have at least 1 in the last *m* positions of *B*

"YES maps to YES":

- Suppose F has a satisfying assignment
- If x_i is assigned TRUE, include x_i^{TRUE} in our subset. Otherwise, include x_i^{FALSE}
- A variable and its negation will never both be assigned TRUE, so we have a 1 in the first n positions of B
- Each clause is satisfied, so we have at least 1 in the last *m* positions of *B*
- Can use up to 2 fillers to get a 3 in the last m positions of B

"NO maps to NO":

34 / 39
"NO maps to NO":

Suppose F is unsatisfiable

"NO maps to NO":

- Suppose *F* is unsatisfiable
- Every satisfying assignment will leave at least one clause unsatisfied

"NO maps to NO":

- Suppose *F* is unsatisfiable
- Every satisfying assignment will leave at least one clause unsatisfied
- One of the last *m* digits of our subset will add up to at most 2

"NO maps to NO":

- Suppose *F* is unsatisfiable
- Every satisfying assignment will leave at least one clause unsatisfied
- One of the last *m* digits of our subset will add up to at most 2
 - Without at least one TRUE variable, we don't have enough fillers to make that clause add up to 3

Alternately, we can prove the contrapositive: yes \leftarrow yes

Alternately, we can prove the contrapositive: yes \leftarrow yes

Suppose there exists a subset that adds up to B

Alternately, we can prove the contrapositive: yes \leftarrow yes

- Suppose there exists a subset that adds up to B
- Assign all of the variables that are part of the subset to be TRUE

Alternately, we can prove the contrapositive: yes \leftarrow yes

- Suppose there exists a subset that adds up to B
- Assign all of the variables that are part of the subset to be TRUE
- Because the first n digits of B are 1, we won't have a variable and its negation both be TRUE

Alternately, we can prove the contrapositive: yes \leftarrow yes

- Suppose there exists a subset that adds up to B
- Assign all of the variables that are part of the subset to be TRUE
- Because the first *n* digits of *B* are 1, we won't have a variable and its negation both be TRUE
- Because the last *m* digits of *B* are all 3, and there are only 2 fillers per clause, at least one variable is TRUE in each clause

P vs. NP

P vs. NP

36 / 39

P vs. NP

Can you design an *efficient* algorithm to find the biggest clique on Facebook?

Can you design an *efficient* algorithm to find the biggest clique on Facebook?

• If you can do this, then P = NP

Can you design an *efficient* algorithm to find the biggest clique on Facebook?

- ▶ If you can do this, then P = NP
- If you believe that $P \neq NP$, then this task is impossible

37

Can you design an *efficient* algorithm to find the biggest clique on Facebook?

- If you can do this, then P = NP
- If you believe that $P \neq NP$, then this task is impossible

There is a million dollar bounty on the answer to this question!

37

Def: The class $\operatorname{co-NP}$ is the set of languages whose complement is in NP

▶ $L \in \text{co-NP} \Leftrightarrow L^c \in \text{NP}$

Def: The class $\operatorname{co-NP}$ is the set of languages whose complement is in NP

$$\blacktriangleright \ L \in \text{co-NP} \Leftrightarrow L^c \in \text{NP}$$

• It is easy to verify if $w \notin L$

38

- ▶ $L \in \text{co-NP} \Leftrightarrow L^c \in \text{NP}$
- It is easy to verify if $w \notin L$
- Example: it is very easy to prove that a number is *not* prime (but harder to prove that it is prime)

- ▶ $L \in \text{co-NP} \Leftrightarrow L^c \in \text{NP}$
- It is easy to verify if $w \notin L$
- Example: it is very easy to prove that a number is *not* prime (but harder to prove that it is prime)
- Some open questions:

- ▶ $L \in \text{co-NP} \Leftrightarrow L^c \in \text{NP}$
- It is easy to verify if $w \notin L$
- Example: it is very easy to prove that a number is *not* prime (but harder to prove that it is prime)
- Some open questions:
 - Does NP = co-NP?

Def: The class $\operatorname{co-NP}$ is the set of languages whose complement is in NP

- ▶ $L \in \text{co-NP} \Leftrightarrow L^c \in \text{NP}$
- It is easy to verify if $w \notin L$
- Example: it is very easy to prove that a number is *not* prime (but harder to prove that it is prime)
- Some open questions:
 - Does NP = co-NP?
 - Does P = NP ∩ co-NP (similar to how decidable = RE ∩ co-RE)?

Def: The class PSPACE is the set of languages that can be decided using polynomial space/memory

Def: The class PSPACE is the set of languages that can be decided using polynomial space/memory

 Space complexity is calculated based on how many extra tape squares are needed to process the input

- Space complexity is calculated based on how many extra tape squares are needed to process the input
- **Key insight:** Unlike time, space can be *reused*

- Space complexity is calculated based on how many extra tape squares are needed to process the input
- **Key insight:** Unlike time, space can be *reused*
- Some open questions:

- Space complexity is calculated based on how many extra tape squares are needed to process the input
- **Key insight:** Unlike time, space can be *reused*
- Some open questions:
 - Does P = PSPACE?

- Space complexity is calculated based on how many extra tape squares are needed to process the input
- **Key insight:** Unlike time, space can be *reused*
- Some open questions:
 - Does P = PSPACE?
 - Does NP = PSPACE?

- Space complexity is calculated based on how many extra tape squares are needed to process the input
- **Key insight:** Unlike time, space can be *reused*
- Some open questions:
 - Does P = PSPACE?
 - Does NP = PSPACE?
 - Does PSPACE = EXP?