
Regular Expressions

Arjun Chandrasekhar

1 / 38



Regular Expressions

I Another way to describe languages

I A formula that can be used to generate strings

I Formed by combining smaller regular
expressions using the three regular operations

2 / 38



Regular Expressions

I Another way to describe languages

I A formula that can be used to generate strings

I Formed by combining smaller regular
expressions using the three regular operations

2 / 38



Regular Expressions

I Another way to describe languages

I A formula that can be used to generate strings

I Formed by combining smaller regular
expressions using the three regular operations

2 / 38



Regular Expressions

I Another way to describe languages

I A formula that can be used to generate strings

I Formed by combining smaller regular
expressions using the three regular operations

2 / 38



Regular Expressions

Let Σ be a alphabet. We say R is a regular
expression if R is:

1. σ for some σ ∈ Σ

2. ε

3. ∅
4. R1 ∪ R2, where R1 and R2 are regular

expressions

5. R1 ◦ R2, where R1 and R2 are regular
expressions, or

6. R∗1 where R1 is a regular expression

3 / 38



Regular Expressions

Let Σ be a alphabet. We say R is a regular
expression if R is:

1. σ for some σ ∈ Σ

2. ε

3. ∅
4. R1 ∪ R2, where R1 and R2 are regular

expressions

5. R1 ◦ R2, where R1 and R2 are regular
expressions, or

6. R∗1 where R1 is a regular expression

3 / 38



Regular Expressions

Let Σ be a alphabet. We say R is a regular
expression if R is:

1. σ for some σ ∈ Σ

2. ε

3. ∅
4. R1 ∪ R2, where R1 and R2 are regular

expressions

5. R1 ◦ R2, where R1 and R2 are regular
expressions, or

6. R∗1 where R1 is a regular expression

3 / 38



Regular Expressions

Let Σ be a alphabet. We say R is a regular
expression if R is:

1. σ for some σ ∈ Σ

2. ε

3. ∅
4. R1 ∪ R2, where R1 and R2 are regular

expressions

5. R1 ◦ R2, where R1 and R2 are regular
expressions, or

6. R∗1 where R1 is a regular expression

3 / 38



Regular Expressions

Let Σ be a alphabet. We say R is a regular
expression if R is:

1. σ for some σ ∈ Σ

2. ε

3. ∅

4. R1 ∪ R2, where R1 and R2 are regular
expressions

5. R1 ◦ R2, where R1 and R2 are regular
expressions, or

6. R∗1 where R1 is a regular expression

3 / 38



Regular Expressions

Let Σ be a alphabet. We say R is a regular
expression if R is:

1. σ for some σ ∈ Σ

2. ε

3. ∅
4. R1 ∪ R2, where R1 and R2 are regular

expressions

5. R1 ◦ R2, where R1 and R2 are regular
expressions, or

6. R∗1 where R1 is a regular expression

3 / 38



Regular Expressions

Let Σ be a alphabet. We say R is a regular
expression if R is:

1. σ for some σ ∈ Σ

2. ε

3. ∅
4. R1 ∪ R2, where R1 and R2 are regular

expressions

5. R1 ◦ R2, where R1 and R2 are regular
expressions, or

6. R∗1 where R1 is a regular expression

3 / 38



Regular Expressions

Let Σ be a alphabet. We say R is a regular
expression if R is:

1. σ for some σ ∈ Σ

2. ε

3. ∅
4. R1 ∪ R2, where R1 and R2 are regular

expressions

5. R1 ◦ R2, where R1 and R2 are regular
expressions, or

6. R∗1 where R1 is a regular expression

3 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = a

A) ε (empty string)

B) a

C) b

D) aaaaaaaaaa

E) None of the above

F) invalid regex

4 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = a

A) ε (empty string)

B) a X

C) b

D) aaaaaaaaaa

E) None of the above

F) invalid regex

4 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = ε

A) ε (empty string)

B) a

C) b

D) aaaaaaaaaa

E) None of the above

F) invalid regex

5 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = ε

A) ε (empty string) X

B) a

C) b

D) aaaaaaaaaa

E) None of the above

F) invalid regex

5 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = ∅

A) ε (empty string)

B) a

C) b

D) aaaaaaaaaa

E) None of the above

F) invalid regex

Empty set is different from empty string!

6 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = ∅

A) ε (empty string)

B) a

C) b

D) aaaaaaaaaa

E) None of the above X

F) invalid regex

Empty set is different from empty string!

6 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = a ◦ b∗

A) ε (empty string)

B) a

C) abababab

D) abbbbbbb

E) None of the above

F) invalid regex

7 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = a ◦ b∗

A) ε (empty string)

B) a X

C) abababab

D) abbbbbbb X

E) None of the above

F) invalid regex

7 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = (a ◦ b)∗

A) ε (empty string)

B) ab

C) abababab

D) abbbbbbb

E) None of the above

F) invalid regex

8 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = (a ◦ b)∗

A) ε (empty string) X

B) ab X

C) abababab X

D) abbbbbbb

E) None of the above

F) invalid regex

8 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = (a ◦ b)∗ ◦ b ◦ b ◦ a

A) ε (empty string)

B) bba

C) abab

D) ababbba

E) None of the above

F) invalid regex

9 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = (a ◦ b)∗ ◦ b ◦ b ◦ a

A) ε (empty string)

B) bba X

C) abab

D) ababbba X

E) None of the above

F) invalid regex

9 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = (a ◦ b∗) ∪ (b ◦ a∗)

A) ε (empty string)

B) abbb

C) aaab

D) b

E) None of the above

F) invalid regex

10 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = (a ◦ b∗) ∪ (b ◦ a∗)

A) ε (empty string)

B) abbb X

C) aaab

D) b X

E) None of the above

F) invalid regex

10 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = (a ◦ b∗) ∪ (c ◦ d∗)

A) ε (empty string)

B) abbb

C) aaab

D) b

E) None of the above

F) invalid regex

11 / 38



Regular expressions

Let Σ = {a, b} Which strings are generated by the
following regex?

R = (a ◦ b∗) ∪ (c ◦ d∗)

A) ε (empty string)

B) abbb

C) aaab

D) b

E) None of the above

F) invalid regex X

11 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪

I Parentheses can be used to override this

I Concatenation is often done implicitly

I Can write bba instead of b ◦ b ◦ a

I Σ is often shorthand for σ1 ∪ σ2 . . . σn
I R+ is shorthand for RR∗ (which is shorthand

for R ◦ R∗)

12 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪

I Parentheses can be used to override this

I Concatenation is often done implicitly

I Can write bba instead of b ◦ b ◦ a

I Σ is often shorthand for σ1 ∪ σ2 . . . σn
I R+ is shorthand for RR∗ (which is shorthand

for R ◦ R∗)

12 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪

I Parentheses can be used to override this

I Concatenation is often done implicitly

I Can write bba instead of b ◦ b ◦ a

I Σ is often shorthand for σ1 ∪ σ2 . . . σn
I R+ is shorthand for RR∗ (which is shorthand

for R ◦ R∗)

12 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪

I Parentheses can be used to override this

I Concatenation is often done implicitly

I Can write bba instead of b ◦ b ◦ a

I Σ is often shorthand for σ1 ∪ σ2 . . . σn
I R+ is shorthand for RR∗ (which is shorthand

for R ◦ R∗)

12 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪

I Parentheses can be used to override this

I Concatenation is often done implicitly

I Can write bba instead of b ◦ b ◦ a

I Σ is often shorthand for σ1 ∪ σ2 . . . σn
I R+ is shorthand for RR∗ (which is shorthand

for R ◦ R∗)

12 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪
I Parentheses can be used to override this

I Concatenation is often done implicitly

I Can write bba instead of b ◦ b ◦ a

I Σ is often shorthand for σ1 ∪ σ2 . . . σn
I R+ is shorthand for RR∗ (which is shorthand

for R ◦ R∗)

12 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪
I Parentheses can be used to override this

I Concatenation is often done implicitly

I Can write bba instead of b ◦ b ◦ a
I Σ is often shorthand for σ1 ∪ σ2 . . . σn
I R+ is shorthand for RR∗ (which is shorthand

for R ◦ R∗)

12 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪
I Parentheses can be used to override this

I Concatenation is often done implicitly
I Can write bba instead of b ◦ b ◦ a

I Σ is often shorthand for σ1 ∪ σ2 . . . σn
I R+ is shorthand for RR∗ (which is shorthand

for R ◦ R∗)

12 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪
I Parentheses can be used to override this

I Concatenation is often done implicitly
I Can write bba instead of b ◦ b ◦ a

I Σ is often shorthand for σ1 ∪ σ2 . . . σn

I R+ is shorthand for RR∗ (which is shorthand
for R ◦ R∗)

12 / 38



Regular Expressions
Some notes:

I Don’t confuse Kleene star and linux wildcard

I Don’t confuse ε and ∅; they are different

I L(R) is the language of R , i.e. the set of
strings generated by R

I The operator precedence is ∗ > ◦ > ∪
I Parentheses can be used to override this

I Concatenation is often done implicitly
I Can write bba instead of b ◦ b ◦ a

I Σ is often shorthand for σ1 ∪ σ2 . . . σn
I R+ is shorthand for RR∗ (which is shorthand

for R ◦ R∗)
12 / 38



Applications of Regular Expressions

I Lexical-analyzer generators, such as lex and
flex. A lexical-analyzer is the part of a compiler
that breaks a program into tokens. Regular
expressions specify the valid tokens of a
programming language.

I String search tools that are built into operating
system utilities (like awk and grep in Unix),
text editors, and programming language
libraries. Regular expressions describe the
strings that are being searched for.

I The regular expressions in these tools typically
have a richer set of operators, to facilitate
more easily describing strings.

13 / 38



Applications of Regular Expressions
I Lexical-analyzer generators, such as lex and

flex. A lexical-analyzer is the part of a compiler
that breaks a program into tokens. Regular
expressions specify the valid tokens of a
programming language.

I String search tools that are built into operating
system utilities (like awk and grep in Unix),
text editors, and programming language
libraries. Regular expressions describe the
strings that are being searched for.

I The regular expressions in these tools typically
have a richer set of operators, to facilitate
more easily describing strings.

13 / 38



Applications of Regular Expressions
I Lexical-analyzer generators, such as lex and

flex. A lexical-analyzer is the part of a compiler
that breaks a program into tokens. Regular
expressions specify the valid tokens of a
programming language.

I String search tools that are built into operating
system utilities (like awk and grep in Unix),
text editors, and programming language
libraries. Regular expressions describe the
strings that are being searched for.

I The regular expressions in these tools typically
have a richer set of operators, to facilitate
more easily describing strings.

13 / 38



Applications of Regular Expressions
I Lexical-analyzer generators, such as lex and

flex. A lexical-analyzer is the part of a compiler
that breaks a program into tokens. Regular
expressions specify the valid tokens of a
programming language.

I String search tools that are built into operating
system utilities (like awk and grep in Unix),
text editors, and programming language
libraries. Regular expressions describe the
strings that are being searched for.

I The regular expressions in these tools typically
have a richer set of operators, to facilitate
more easily describing strings.

13 / 38



Example regexes

Let Σ = {0, 1}

1. Σ∗ = (0 ∪ 1)∗ = all binary strings (you have
already seen this one!)

2. Σ∗001Σ∗ = {w | w contains 001 as a
substring}

3. 0 ∪ 1 ∪ (0Σ∗0) ∪ (1Σ∗1) = {w | w starts and
ends with the same symbol}

14 / 38



Example regexes

Let Σ = {0, 1}

1. Σ∗ = (0 ∪ 1)∗ = all binary strings (you have
already seen this one!)

2. Σ∗001Σ∗ = {w | w contains 001 as a
substring}

3. 0 ∪ 1 ∪ (0Σ∗0) ∪ (1Σ∗1) = {w | w starts and
ends with the same symbol}

14 / 38



Example regexes

Let Σ = {0, 1}
1. Σ∗ = (0 ∪ 1)∗ = all binary strings (you have

already seen this one!)

2. Σ∗001Σ∗ = {w | w contains 001 as a
substring}

3. 0 ∪ 1 ∪ (0Σ∗0) ∪ (1Σ∗1) = {w | w starts and
ends with the same symbol}

14 / 38



Example regexes

Let Σ = {0, 1}
1. Σ∗ = (0 ∪ 1)∗ = all binary strings (you have

already seen this one!)

2. Σ∗001Σ∗ = {w | w contains 001 as a
substring}

3. 0 ∪ 1 ∪ (0Σ∗0) ∪ (1Σ∗1) = {w | w starts and
ends with the same symbol}

14 / 38



Example regexes

Let Σ = {0, 1}
1. Σ∗ = (0 ∪ 1)∗ = all binary strings (you have

already seen this one!)

2. Σ∗001Σ∗ = {w | w contains 001 as a
substring}

3. 0 ∪ 1 ∪ (0Σ∗0) ∪ (1Σ∗1) = {w | w starts and
ends with the same symbol}

14 / 38



Regex practice

Let Σ = {0, 1}. Write a regex for:

L = {w | every odd position is 1}

R = (1Σ)∗ ◦ (ε ∪ 1)

15 / 38



Regex practice

Let Σ = {0, 1}. Write a regex for:

L = {w | every odd position is 1}

R = (1Σ)∗ ◦ (ε ∪ 1)

15 / 38



Regex practice

Let Σ = {0, 1}. Write a regex for:

L = {w | w contains an even number of 0s}

(1∗01∗0)∗1∗

1∗(01∗01∗)∗

16 / 38



Regex practice

Let Σ = {0, 1}. Write a regex for:

L = {w | w contains an even number of 0s}

(1∗01∗0)∗1∗

1∗(01∗01∗)∗

16 / 38



Regex practice

Let Σ = {0, 1}. Write a regex for:

L = {w | w contains an even number of 0s}

(1∗01∗0)∗1∗

1∗(01∗01∗)∗

16 / 38



Regex practice

Let Σ = {0, 1}. Write a regex for:

L = {w | w contains exactly two 1s}

(0∗1)(0∗1)0∗

17 / 38



Regex practice

Let Σ = {0, 1}. Write a regex for:

L = {w | w contains exactly two 1s}

(0∗1)(0∗1)0∗

17 / 38



Regex practice

Let Σ = {0, 1}. Write a regex for:

L = {w | w contains an even number of 0s or
exactly two 1s}

((1∗01∗0)∗1∗) ∪ (0∗10∗10∗)

18 / 38



Regex practice

Let Σ = {0, 1}. Write a regex for:

L = {w | w contains an even number of 0s or
exactly two 1s}

((1∗01∗0)∗1∗) ∪ (0∗10∗10∗)

18 / 38



Regex practice
Let Σ = {0, 1}. Write a regex for:

L = {w | w contains an even number of 0s and
exactly two 1s}

(00)∗1(00)∗1(00)∗

∪
0(00)∗10(00)∗1(00)∗

∪
(00)∗10(00)∗10(00)∗

∪
0(00)∗1(00)∗10(00)∗

19 / 38



Regex practice
Let Σ = {0, 1}. Write a regex for:

L = {w | w contains an even number of 0s and
exactly two 1s}

(00)∗1(00)∗1(00)∗

∪
0(00)∗10(00)∗1(00)∗

∪
(00)∗10(00)∗10(00)∗

∪
0(00)∗1(00)∗10(00)∗

19 / 38



Regex to NFA
Design an NFA with 5 states to recognize 0∗ ∪ 1∗0+

q0

q1

0

0∗

q2

1

1∗

q3 q4
0

0

0+

ε

1∗ ◦ 0+

ε

ε

20 / 38



Regex to NFA
Design an NFA with 5 states to recognize 0∗ ∪ 1∗0+

q0

q1

0

0∗

q2

1

1∗

q3 q4
0

0

0+

ε

1∗ ◦ 0+

ε

ε

20 / 38



Regex to NFA
Design an NFA with 5 states to recognize 0∗ ∪ 1∗0+

q0

q1

0

0∗

q2

1

1∗

q3 q4
0

0

0+

ε

1∗ ◦ 0+

ε

ε

20 / 38



Regex to NFA
Design an NFA with 5 states to recognize 0∗ ∪ 1∗0+

q0

q1

0

0∗

q2

1

1∗

q3 q4
0

0

0+

ε

1∗ ◦ 0+

ε

ε

20 / 38



Regex to NFA
Design an NFA with 5 states to recognize 0∗ ∪ 1∗0+

q0

q1

0

0∗

q2

1

1∗

q3 q4
0

0

0+

ε

1∗ ◦ 0+

ε

ε

20 / 38



Regex to NFA
Design an NFA with 5 states to recognize 0∗ ∪ 1∗0+

q0

q1

0

0∗

q2

1

1∗

q3 q4
0

0

0+

ε

1∗ ◦ 0+

ε

ε

20 / 38



Kleene’s Theorem

Theorem: A language is described by a regular
expression if and only if it is regular

I What are the two directions we must prove?

I (⇒) If a language is described by a regular
expression, it is regular

I (⇐) If a language is regular, then it is described by
a regular expression

I Recall: A language is regular if and only if it is
described by a DFA

I Or equivalently (and conveniently), an NFA

21 / 38



Kleene’s Theorem

Theorem: A language is described by a regular
expression if and only if it is regular

I What are the two directions we must prove?

I (⇒) If a language is described by a regular
expression, it is regular

I (⇐) If a language is regular, then it is described by
a regular expression

I Recall: A language is regular if and only if it is
described by a DFA

I Or equivalently (and conveniently), an NFA

21 / 38



Kleene’s Theorem

Theorem: A language is described by a regular
expression if and only if it is regular
I What are the two directions we must prove?

I (⇒) If a language is described by a regular
expression, it is regular

I (⇐) If a language is regular, then it is described by
a regular expression

I Recall: A language is regular if and only if it is
described by a DFA

I Or equivalently (and conveniently), an NFA

21 / 38



Kleene’s Theorem

Theorem: A language is described by a regular
expression if and only if it is regular
I What are the two directions we must prove?

I (⇒) If a language is described by a regular
expression, it is regular

I (⇐) If a language is regular, then it is described by
a regular expression

I Recall: A language is regular if and only if it is
described by a DFA

I Or equivalently (and conveniently), an NFA

21 / 38



Kleene’s Theorem

Theorem: A language is described by a regular
expression if and only if it is regular
I What are the two directions we must prove?

I (⇒) If a language is described by a regular
expression, it is regular

I (⇐) If a language is regular, then it is described by
a regular expression

I Recall: A language is regular if and only if it is
described by a DFA

I Or equivalently (and conveniently), an NFA

21 / 38



Kleene’s Theorem

Theorem: A language is described by a regular
expression if and only if it is regular
I What are the two directions we must prove?

I (⇒) If a language is described by a regular
expression, it is regular

I (⇐) If a language is regular, then it is described by
a regular expression

I Recall: A language is regular if and only if it is
described by a DFA

I Or equivalently (and conveniently), an NFA

21 / 38



Kleene’s Theorem

Theorem: A language is described by a regular
expression if and only if it is regular
I What are the two directions we must prove?

I (⇒) If a language is described by a regular
expression, it is regular

I (⇐) If a language is regular, then it is described by
a regular expression

I Recall: A language is regular if and only if it is
described by a DFA
I Or equivalently (and conveniently), an NFA

21 / 38



Kleene’s Theorem (Forward Direction)

Claim: If a language L can be described by a
regular expression R , then L is regular

I Proof Idea: We will use induction to create
an NFA for R

I Show how to make an NFA for the atomic
regular expressions

I For union, concatenation, and star, use
induction to make NFAs for the smaller parts
of the expression, and then combine them

22 / 38



Kleene’s Theorem (Forward Direction)

Claim: If a language L can be described by a
regular expression R , then L is regular

I Proof Idea: We will use induction to create
an NFA for R

I Show how to make an NFA for the atomic
regular expressions

I For union, concatenation, and star, use
induction to make NFAs for the smaller parts
of the expression, and then combine them

22 / 38



Kleene’s Theorem (Forward Direction)

Claim: If a language L can be described by a
regular expression R , then L is regular

I Proof Idea: We will use induction to create
an NFA for R

I Show how to make an NFA for the atomic
regular expressions

I For union, concatenation, and star, use
induction to make NFAs for the smaller parts
of the expression, and then combine them

22 / 38



Kleene’s Theorem (Forward Direction)

Claim: If a language L can be described by a
regular expression R , then L is regular

I Proof Idea: We will use induction to create
an NFA for R

I Show how to make an NFA for the atomic
regular expressions

I For union, concatenation, and star, use
induction to make NFAs for the smaller parts
of the expression, and then combine them

22 / 38



Kleene’s Theorem (Forward Direction)

Claim: If a language L can be described by a
regular expression R , then L is regular

I Proof Idea: We will use induction to create
an NFA for R

I Show how to make an NFA for the atomic
regular expressions

I For union, concatenation, and star, use
induction to make NFAs for the smaller parts
of the expression, and then combine them

22 / 38



Kleene’s theorem (Forward Direction)

Base Case: R = σ ∈ Σ

q0 q1
a

23 / 38



Kleene’s theorem (Forward Direction)

Base Case: R = ε

q0

23 / 38



Kleene’s theorem (Forward Direction)

Base Case: R = ∅

q0

23 / 38



Kleene’s theorem (Forward Direction)
Inductive Case: R = R1 ∪ R2

23 / 38



Kleene’s theorem (Forward Direction)
Inductive Case: R = R1 ◦ R2

23 / 38



Kleene’s theorem (Forward Direction)
Inductive Case: R = (R1)∗

23 / 38



Regex to NFA Conversion Example

Let’s make an NFA for R = ((ab) ∪ a)∗

24 / 38



Regex to NFA Conversion Example

Let’s make an NFA for R = ((ab) ∪ a)∗

NFA for a

q0 q1
a

24 / 38



Regex to NFA Conversion Example

Let’s make an NFA for R = ((ab) ∪ a)∗

NFA for b

q2 q3
b

24 / 38



Regex to NFA Conversion Example

Let’s make an NFA for R = ((ab) ∪ a)∗

NFA for ab = a ◦ b

q0 q1 q2 q3
a bε

24 / 38



Regex to NFA Conversion Example
Let’s make an NFA for R = ((ab) ∪ a)∗

NFA for ab ∪ a

q4

q0 q1 q2

q3

q5 q6

a

b

ε

a

ε

ε

24 / 38



Regex to NFA Conversion Example
Let’s make an NFA for R = ((ab) ∪ a)∗

NFA for (ab ∪ a)∗

q7 q4

q0 q1 q2

q3

q5 q6

a

b

ε

a

ε

ε

ε

ε

ε

24 / 38



Kleene’s Theorem (backwards direction)

Claim: If L is regular, then L can be described by a
regular expression

I Proof Idea: Convert the DFA for L into a
regex

I Extend the DFA so that each transition is a
regex

I “Rip” states one at a time, and modify the
other transitions to compensate

I When there’s just one transition remaining, we
will have the desired regex

25 / 38



Kleene’s Theorem (backwards direction)

Claim: If L is regular, then L can be described by a
regular expression

I Proof Idea: Convert the DFA for L into a
regex

I Extend the DFA so that each transition is a
regex

I “Rip” states one at a time, and modify the
other transitions to compensate

I When there’s just one transition remaining, we
will have the desired regex

25 / 38



Kleene’s Theorem (backwards direction)

Claim: If L is regular, then L can be described by a
regular expression

I Proof Idea: Convert the DFA for L into a
regex

I Extend the DFA so that each transition is a
regex

I “Rip” states one at a time, and modify the
other transitions to compensate

I When there’s just one transition remaining, we
will have the desired regex

25 / 38



Kleene’s Theorem (backwards direction)

Claim: If L is regular, then L can be described by a
regular expression

I Proof Idea: Convert the DFA for L into a
regex

I Extend the DFA so that each transition is a
regex

I “Rip” states one at a time, and modify the
other transitions to compensate

I When there’s just one transition remaining, we
will have the desired regex

25 / 38



Kleene’s Theorem (backwards direction)

Claim: If L is regular, then L can be described by a
regular expression

I Proof Idea: Convert the DFA for L into a
regex

I Extend the DFA so that each transition is a
regex

I “Rip” states one at a time, and modify the
other transitions to compensate

I When there’s just one transition remaining, we
will have the desired regex

25 / 38



Kleene’s Theorem (backwards direction)

Claim: If L is regular, then L can be described by a
regular expression

I Proof Idea: Convert the DFA for L into a
regex

I Extend the DFA so that each transition is a
regex

I “Rip” states one at a time, and modify the
other transitions to compensate

I When there’s just one transition remaining, we
will have the desired regex

25 / 38



GNFAs

A Generalized Nondeterministic Finite
Automata (GNFA) is an NFA in which arrows are
labelled by regular expressions (rather than symbols)

q0

q1 q2

q3

∅ ab∗

b

ab

b∗

(aa)∗

a∗ aa

ab ∪ ba

26 / 38



GNFAs
A Generalized Nondeterministic Finite
Automata (GNFA) is an NFA in which arrows are
labelled by regular expressions (rather than symbols)

q0

q1 q2

q3

∅ ab∗

b

ab

b∗

(aa)∗

a∗ aa

ab ∪ ba

26 / 38



GNFAs
A Generalized Nondeterministic Finite
Automata (GNFA) is an NFA in which arrows are
labelled by regular expressions (rather than symbols)

q0

q1 q2

q3

∅ ab∗

b

ab

b∗

(aa)∗

a∗ aa

ab ∪ ba

26 / 38



GNFAs
For convenience we require GNFAs be in the
following special form:

I The start state qs has transition arrows going
to every other state, but no arrows coming in
from any other state

I There is only a single accept state, qF , and it
has arrows coming in from every other state
but no arrows going to any other state.
Furthermore, the accept state is not the same
as the start state.

I Except for the start and accept states, one
arrow goes from every state to every other
state, and also from each state to itself.

27 / 38



GNFAs
For convenience we require GNFAs be in the
following special form:
I The start state qs has transition arrows going

to every other state, but no arrows coming in
from any other state

I There is only a single accept state, qF , and it
has arrows coming in from every other state
but no arrows going to any other state.
Furthermore, the accept state is not the same
as the start state.

I Except for the start and accept states, one
arrow goes from every state to every other
state, and also from each state to itself.

27 / 38



GNFAs
For convenience we require GNFAs be in the
following special form:
I The start state qs has transition arrows going

to every other state, but no arrows coming in
from any other state

I There is only a single accept state, qF , and it
has arrows coming in from every other state
but no arrows going to any other state.
Furthermore, the accept state is not the same
as the start state.

I Except for the start and accept states, one
arrow goes from every state to every other
state, and also from each state to itself.

27 / 38



GNFAs
For convenience we require GNFAs be in the
following special form:
I The start state qs has transition arrows going

to every other state, but no arrows coming in
from any other state

I There is only a single accept state, qF , and it
has arrows coming in from every other state
but no arrows going to any other state.
Furthermore, the accept state is not the same
as the start state.

I Except for the start and accept states, one
arrow goes from every state to every other
state, and also from each state to itself.

27 / 38



DFA to GNFA

To make a DFA onto a GNFA:

1. Create a special start state, with an ε transition
to the original start state

2. Add a special accept state, with ε transitions
from the original accept states

3. If any transition has multiple symbols, combine
them into a union regex

4. If any transition between states is missing, ad
an ∅ transition

I We can omit these when drawing state diagrams

28 / 38



DFA to GNFA

To make a DFA onto a GNFA:

1. Create a special start state, with an ε transition
to the original start state

2. Add a special accept state, with ε transitions
from the original accept states

3. If any transition has multiple symbols, combine
them into a union regex

4. If any transition between states is missing, ad
an ∅ transition

I We can omit these when drawing state diagrams

28 / 38



DFA to GNFA

To make a DFA onto a GNFA:

1. Create a special start state, with an ε transition
to the original start state

2. Add a special accept state, with ε transitions
from the original accept states

3. If any transition has multiple symbols, combine
them into a union regex

4. If any transition between states is missing, ad
an ∅ transition

I We can omit these when drawing state diagrams

28 / 38



DFA to GNFA

To make a DFA onto a GNFA:

1. Create a special start state, with an ε transition
to the original start state

2. Add a special accept state, with ε transitions
from the original accept states

3. If any transition has multiple symbols, combine
them into a union regex

4. If any transition between states is missing, ad
an ∅ transition

I We can omit these when drawing state diagrams

28 / 38



DFA to GNFA

To make a DFA onto a GNFA:

1. Create a special start state, with an ε transition
to the original start state

2. Add a special accept state, with ε transitions
from the original accept states

3. If any transition has multiple symbols, combine
them into a union regex

4. If any transition between states is missing, ad
an ∅ transition

I We can omit these when drawing state diagrams

28 / 38



DFA to GNFA

To make a DFA onto a GNFA:

1. Create a special start state, with an ε transition
to the original start state

2. Add a special accept state, with ε transitions
from the original accept states

3. If any transition has multiple symbols, combine
them into a union regex

4. If any transition between states is missing, ad
an ∅ transition
I We can omit these when drawing state diagrams

28 / 38



DFA to GNFA
Starting DFA

1 2

a

b

a, b

Starting GNFA

s 1 2 a
ε

a

b

a ∪ b

ε

29 / 38



DFA to GNFA
Starting DFA

1 2

a

b

a, b

Starting GNFA

s 1 2 a
ε

a

b

a ∪ b

ε

29 / 38



DFA to GNFA

Full starting GNFA

s

1 2

a

ε

a

b

a ∪ b

ε

∅
∅

∅

∅

30 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj

(R4)

2. Go through qrip

(R1 ◦ R∗2 ◦ R3)
2.1 qi → qrip

(R1)

2.2 qrip → qrip any number of times

(R∗
2 )

2.3 qrip → qj

(R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj

(R4)
2. Go through qrip

(R1 ◦ R∗2 ◦ R3)
2.1 qi → qrip

(R1)

2.2 qrip → qrip any number of times

(R∗
2 )

2.3 qrip → qj

(R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj

(R4)

2. Go through qrip

(R1 ◦ R∗2 ◦ R3)
2.1 qi → qrip

(R1)

2.2 qrip → qrip any number of times

(R∗
2 )

2.3 qrip → qj

(R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj

(R4)

2. Go through qrip

(R1 ◦ R∗2 ◦ R3)

2.1 qi → qrip

(R1)
2.2 qrip → qrip any number of times

(R∗
2 )

2.3 qrip → qj

(R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj

(R4)

2. Go through qrip

(R1 ◦ R∗2 ◦ R3)

2.1 qi → qrip

(R1)

2.2 qrip → qrip any number of times

(R∗
2 )

2.3 qrip → qj

(R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj

(R4)

2. Go through qrip

(R1 ◦ R∗2 ◦ R3)

2.1 qi → qrip

(R1)

2.2 qrip → qrip any number of times

(R∗
2 )

2.3 qrip → qj

(R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj (R4)
2. Go through qrip

(R1 ◦ R∗2 ◦ R3)

2.1 qi → qrip

(R1)

2.2 qrip → qrip any number of times

(R∗
2 )

2.3 qrip → qj

(R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj (R4)
2. Go through qrip

(R1 ◦ R∗2 ◦ R3)

2.1 qi → qrip (R1)
2.2 qrip → qrip any number of times

(R∗
2 )

2.3 qrip → qj

(R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj (R4)
2. Go through qrip

(R1 ◦ R∗2 ◦ R3)

2.1 qi → qrip (R1)
2.2 qrip → qrip any number of times (R∗

2 )
2.3 qrip → qj

(R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj (R4)
2. Go through qrip

(R1 ◦ R∗2 ◦ R3)

2.1 qi → qrip (R1)
2.2 qrip → qrip any number of times (R∗

2 )
2.3 qrip → qj (R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj (R4)
2. Go through qrip (R1 ◦ R∗2 ◦ R3)

2.1 qi → qrip (R1)
2.2 qrip → qrip any number of times (R∗

2 )
2.3 qrip → qj (R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4

31 / 38



Ripping a state
How could we get from qi to qj?

qi

qrip

qj

R1

R2

R3

R4

1. Go directly from qi to qj (R4)
2. Go through qrip (R1 ◦ R∗2 ◦ R3)

2.1 qi → qrip (R1)
2.2 qrip → qrip any number of times (R∗

2 )
2.3 qrip → qj (R3)

R = (R1 ◦ R∗2 ◦ R3) ∪ R4
31 / 38



Ripping a State

Before

qi

qrip

qj

R1

R2

R3

R4

After

qi qj
(R1 ◦ R∗2 ◦ R3) ∪ R4

32 / 38



Ripping a State
Before

qi

qrip

qj

R1

R2

R3

R4

After

qi qj
(R1 ◦ R∗2 ◦ R3) ∪ R4

32 / 38



Ripping a State
Before

qi

qrip

qj

R1

R2

R3

R4

After

qi qj
(R1 ◦ R∗2 ◦ R3) ∪ R4

32 / 38



DFA to Regex

Starting DFA

1 2

a

b

a, b

33 / 38



DFA to Regex
Starting DFA

1 2

a

b

a, b

Starting GNFA

s 1 2 a
ε

a

b

a ∪ b

ε

33 / 38



DFA to Regex
Starting GNFA

s 1 2 a
ε

a

b

a ∪ b

ε

Rip State 2

s 1 a
ε

a

b(a ∪ b)∗

33 / 38



DFA to Regex
Rip State 2

s 1 a
ε

a

b(a ∪ b)∗

Rip State 1

s a
a∗b(a ∪ b)∗

33 / 38



DFA to Regex

s a
a∗b(a ∪ b)∗

R = a∗b(a ∪ B)∗

33 / 38



Regular expressions recap

I Regular expressions are equivalent to NFAs

I Which makes them equivalent to DFAs

I DFAs are equivalent to regular expressions

I A language is regular if and only if it is
described by a regular expression

I To show a language is regular, can use a state
machine or a regex

34 / 38



Regular expressions recap

I Regular expressions are equivalent to NFAs

I Which makes them equivalent to DFAs

I DFAs are equivalent to regular expressions

I A language is regular if and only if it is
described by a regular expression

I To show a language is regular, can use a state
machine or a regex

34 / 38



Regular expressions recap

I Regular expressions are equivalent to NFAs
I Which makes them equivalent to DFAs

I DFAs are equivalent to regular expressions

I A language is regular if and only if it is
described by a regular expression

I To show a language is regular, can use a state
machine or a regex

34 / 38



Regular expressions recap

I Regular expressions are equivalent to NFAs
I Which makes them equivalent to DFAs

I DFAs are equivalent to regular expressions

I A language is regular if and only if it is
described by a regular expression

I To show a language is regular, can use a state
machine or a regex

34 / 38



Regular expressions recap

I Regular expressions are equivalent to NFAs
I Which makes them equivalent to DFAs

I DFAs are equivalent to regular expressions

I A language is regular if and only if it is
described by a regular expression

I To show a language is regular, can use a state
machine or a regex

34 / 38



Regular expressions recap

I Regular expressions are equivalent to NFAs
I Which makes them equivalent to DFAs

I DFAs are equivalent to regular expressions

I A language is regular if and only if it is
described by a regular expression

I To show a language is regular, can use a state
machine or a regex

34 / 38



Regular expressions recap

I Regular expressions are equivalent to NFAs
I Which makes them equivalent to DFAs

I DFAs are equivalent to regular expressions

I A language is regular if and only if it is
described by a regular expression

I To show a language is regular, can use a state
machine or a regex

34 / 38



Regular expression closure proofs

I Regular expressions characterize the regular
languages

I To show a language is regular, it is sometimes
more convenient to use a regex than a state
machine

I Sometimes, it is easier to write a closure proof
using a regex

I Blueprint: Use an inductive proof

I Base case: Show that closure holds for the three
atomic regexes (∅, ε, a)

I Inductive case: show that closure holds for t he
three regular operations (union, concatenation,
Kleene star)

35 / 38



Regular expression closure proofs
I Regular expressions characterize the regular

languages

I To show a language is regular, it is sometimes
more convenient to use a regex than a state
machine

I Sometimes, it is easier to write a closure proof
using a regex

I Blueprint: Use an inductive proof

I Base case: Show that closure holds for the three
atomic regexes (∅, ε, a)

I Inductive case: show that closure holds for t he
three regular operations (union, concatenation,
Kleene star)

35 / 38



Regular expression closure proofs
I Regular expressions characterize the regular

languages

I To show a language is regular, it is sometimes
more convenient to use a regex than a state
machine

I Sometimes, it is easier to write a closure proof
using a regex

I Blueprint: Use an inductive proof

I Base case: Show that closure holds for the three
atomic regexes (∅, ε, a)

I Inductive case: show that closure holds for t he
three regular operations (union, concatenation,
Kleene star)

35 / 38



Regular expression closure proofs
I Regular expressions characterize the regular

languages

I To show a language is regular, it is sometimes
more convenient to use a regex than a state
machine

I Sometimes, it is easier to write a closure proof
using a regex

I Blueprint: Use an inductive proof

I Base case: Show that closure holds for the three
atomic regexes (∅, ε, a)

I Inductive case: show that closure holds for t he
three regular operations (union, concatenation,
Kleene star)

35 / 38



Regular expression closure proofs
I Regular expressions characterize the regular

languages

I To show a language is regular, it is sometimes
more convenient to use a regex than a state
machine

I Sometimes, it is easier to write a closure proof
using a regex

I Blueprint: Use an inductive proof

I Base case: Show that closure holds for the three
atomic regexes (∅, ε, a)

I Inductive case: show that closure holds for t he
three regular operations (union, concatenation,
Kleene star)

35 / 38



Regular expression closure proofs
I Regular expressions characterize the regular

languages

I To show a language is regular, it is sometimes
more convenient to use a regex than a state
machine

I Sometimes, it is easier to write a closure proof
using a regex

I Blueprint: Use an inductive proof
I Base case: Show that closure holds for the three

atomic regexes (∅, ε, a)

I Inductive case: show that closure holds for t he
three regular operations (union, concatenation,
Kleene star)

35 / 38



Regular expression closure proofs
I Regular expressions characterize the regular

languages

I To show a language is regular, it is sometimes
more convenient to use a regex than a state
machine

I Sometimes, it is easier to write a closure proof
using a regex

I Blueprint: Use an inductive proof
I Base case: Show that closure holds for the three

atomic regexes (∅, ε, a)
I Inductive case: show that closure holds for t he

three regular operations (union, concatenation,
Kleene star)

35 / 38



EVERY-OTHER closure
Claim: If A is regular then EVERY-OTHER(A) is
regular

EVERY-OTHER(A) = {w = a1y1 . . . anyn|
a1 . . . an ∈ A

y ′i s can be anything}

I Because A is regular, it is described by a
regular expression R

I We will construct a regular expression R ′ that
describes EVERY-OTHER(A)

36 / 38



EVERY-OTHER closure
Claim: If A is regular then EVERY-OTHER(A) is
regular

EVERY-OTHER(A) = {w = a1y1 . . . anyn|
a1 . . . an ∈ A

y ′i s can be anything}

I Because A is regular, it is described by a
regular expression R

I We will construct a regular expression R ′ that
describes EVERY-OTHER(A)

36 / 38



EVERY-OTHER closure
Claim: If A is regular then EVERY-OTHER(A) is
regular

EVERY-OTHER(A) = {w = a1y1 . . . anyn|
a1 . . . an ∈ A

y ′i s can be anything}

I Because A is regular, it is described by a
regular expression R

I We will construct a regular expression R ′ that
describes EVERY-OTHER(A)

36 / 38



EVERY-OTHER closure: base case

I R = ∅

R ′ = ∅

I R = ε

R ′ = ε

I R = a ∈ Σ

R ′ = aΣ

37 / 38



EVERY-OTHER closure: base case

I R = ∅

R ′ = ∅
I R = ε

R ′ = ε

I R = a ∈ Σ

R ′ = aΣ

37 / 38



EVERY-OTHER closure: base case

I R = ∅
R ′ = ∅

I R = ε

R ′ = ε

I R = a ∈ Σ

R ′ = aΣ

37 / 38



EVERY-OTHER closure: base case

I R = ∅
R ′ = ∅

I R = ε

R ′ = ε

I R = a ∈ Σ

R ′ = aΣ

37 / 38



EVERY-OTHER closure: base case

I R = ∅
R ′ = ∅

I R = ε
R ′ = ε

I R = a ∈ Σ

R ′ = aΣ

37 / 38



EVERY-OTHER closure: base case

I R = ∅
R ′ = ∅

I R = ε
R ′ = ε

I R = a ∈ Σ

R ′ = aΣ

37 / 38



EVERY-OTHER closure: base case

I R = ∅
R ′ = ∅

I R = ε
R ′ = ε

I R = a ∈ Σ
R ′ = aΣ

37 / 38



EVERY-OTHER closure: inductive case

Assume if A is described by a regex Ri with size
≤ n, there is a regex R ′i for EVERY-OTHER(A)

Let A be described by a regex R with size n + 1.

I R = R1 ∪ R2

R ′ = R ′1 ∪ R ′2

I R = R1 ◦ R2

R ′ = R ′1 ◦ R ′2

I R = (R1)∗

R ′ = (R ′1)∗

38 / 38



EVERY-OTHER closure: inductive case

Assume if A is described by a regex Ri with size
≤ n, there is a regex R ′i for EVERY-OTHER(A)

Let A be described by a regex R with size n + 1.

I R = R1 ∪ R2

R ′ = R ′1 ∪ R ′2
I R = R1 ◦ R2

R ′ = R ′1 ◦ R ′2

I R = (R1)∗

R ′ = (R ′1)∗

38 / 38



EVERY-OTHER closure: inductive case

Assume if A is described by a regex Ri with size
≤ n, there is a regex R ′i for EVERY-OTHER(A)

Let A be described by a regex R with size n + 1.

I R = R1 ∪ R2

R ′ = R ′1 ∪ R ′2

I R = R1 ◦ R2

R ′ = R ′1 ◦ R ′2

I R = (R1)∗

R ′ = (R ′1)∗

38 / 38



EVERY-OTHER closure: inductive case

Assume if A is described by a regex Ri with size
≤ n, there is a regex R ′i for EVERY-OTHER(A)

Let A be described by a regex R with size n + 1.

I R = R1 ∪ R2

R ′ = R ′1 ∪ R ′2
I R = R1 ◦ R2

R ′ = R ′1 ◦ R ′2
I R = (R1)∗

R ′ = (R ′1)∗

38 / 38



EVERY-OTHER closure: inductive case

Assume if A is described by a regex Ri with size
≤ n, there is a regex R ′i for EVERY-OTHER(A)

Let A be described by a regex R with size n + 1.

I R = R1 ∪ R2

R ′ = R ′1 ∪ R ′2
I R = R1 ◦ R2

R ′ = R ′1 ◦ R ′2

I R = (R1)∗

R ′ = (R ′1)∗

38 / 38



EVERY-OTHER closure: inductive case

Assume if A is described by a regex Ri with size
≤ n, there is a regex R ′i for EVERY-OTHER(A)

Let A be described by a regex R with size n + 1.

I R = R1 ∪ R2

R ′ = R ′1 ∪ R ′2
I R = R1 ◦ R2

R ′ = R ′1 ◦ R ′2
I R = (R1)∗

R ′ = (R ′1)∗

38 / 38



EVERY-OTHER closure: inductive case

Assume if A is described by a regex Ri with size
≤ n, there is a regex R ′i for EVERY-OTHER(A)

Let A be described by a regex R with size n + 1.

I R = R1 ∪ R2

R ′ = R ′1 ∪ R ′2
I R = R1 ◦ R2

R ′ = R ′1 ◦ R ′2
I R = (R1)∗

R ′ = (R ′1)∗

38 / 38


