
Theory of Computation
Time Complexity

Arjun Chandrasekhar

1 / 18



Introduction to complexity theory

I So far we’ve studied what problems can (and
can’t) be solved by computers with
theoretically unlimited resources

I In the real world, we have limited resources

I time
I memory
I parallelism (i.e. number of processors)
I randomness

I Complexity theory: what problems can (and
can’t) be solved within specific resource
constraints

2 / 18



Introduction to complexity theory

I So far we’ve studied what problems can (and
can’t) be solved by computers with
theoretically unlimited resources

I In the real world, we have limited resources

I time
I memory
I parallelism (i.e. number of processors)
I randomness

I Complexity theory: what problems can (and
can’t) be solved within specific resource
constraints

2 / 18



Introduction to complexity theory

I So far we’ve studied what problems can (and
can’t) be solved by computers with
theoretically unlimited resources

I In the real world, we have limited resources

I time
I memory
I parallelism (i.e. number of processors)
I randomness

I Complexity theory: what problems can (and
can’t) be solved within specific resource
constraints

2 / 18



Introduction to complexity theory

I So far we’ve studied what problems can (and
can’t) be solved by computers with
theoretically unlimited resources

I In the real world, we have limited resources
I time

I memory
I parallelism (i.e. number of processors)
I randomness

I Complexity theory: what problems can (and
can’t) be solved within specific resource
constraints

2 / 18



Introduction to complexity theory

I So far we’ve studied what problems can (and
can’t) be solved by computers with
theoretically unlimited resources

I In the real world, we have limited resources
I time
I memory

I parallelism (i.e. number of processors)
I randomness

I Complexity theory: what problems can (and
can’t) be solved within specific resource
constraints

2 / 18



Introduction to complexity theory

I So far we’ve studied what problems can (and
can’t) be solved by computers with
theoretically unlimited resources

I In the real world, we have limited resources
I time
I memory
I parallelism (i.e. number of processors)

I randomness

I Complexity theory: what problems can (and
can’t) be solved within specific resource
constraints

2 / 18



Introduction to complexity theory

I So far we’ve studied what problems can (and
can’t) be solved by computers with
theoretically unlimited resources

I In the real world, we have limited resources
I time
I memory
I parallelism (i.e. number of processors)
I randomness

I Complexity theory: what problems can (and
can’t) be solved within specific resource
constraints

2 / 18



Introduction to complexity theory

I So far we’ve studied what problems can (and
can’t) be solved by computers with
theoretically unlimited resources

I In the real world, we have limited resources
I time
I memory
I parallelism (i.e. number of processors)
I randomness

I Complexity theory: what problems can (and
can’t) be solved within specific resource
constraints

2 / 18



Worst case analysis

I We measure resources (e.g. time) using the
Turing machine model of computation

I Resources are measured as a function
f : N→ N of the input length

I f (n) tells us the maximum number of resources the
machine could use on all possible inputs of size n

I “Worst case analysis”

I Input length n is the number of symbols in the
input string on the tape

I The input string may encode an object with a
different size (e.g. graph with n vertices vs.
adjacency matrix with n2 elements)

3 / 18



Worst case analysis

I We measure resources (e.g. time) using the
Turing machine model of computation

I Resources are measured as a function
f : N→ N of the input length

I f (n) tells us the maximum number of resources the
machine could use on all possible inputs of size n

I “Worst case analysis”

I Input length n is the number of symbols in the
input string on the tape

I The input string may encode an object with a
different size (e.g. graph with n vertices vs.
adjacency matrix with n2 elements)

3 / 18



Worst case analysis

I We measure resources (e.g. time) using the
Turing machine model of computation

I Resources are measured as a function
f : N→ N of the input length

I f (n) tells us the maximum number of resources the
machine could use on all possible inputs of size n

I “Worst case analysis”

I Input length n is the number of symbols in the
input string on the tape

I The input string may encode an object with a
different size (e.g. graph with n vertices vs.
adjacency matrix with n2 elements)

3 / 18



Worst case analysis

I We measure resources (e.g. time) using the
Turing machine model of computation

I Resources are measured as a function
f : N→ N of the input length
I f (n) tells us the maximum number of resources the

machine could use on all possible inputs of size n

I “Worst case analysis”

I Input length n is the number of symbols in the
input string on the tape

I The input string may encode an object with a
different size (e.g. graph with n vertices vs.
adjacency matrix with n2 elements)

3 / 18



Worst case analysis

I We measure resources (e.g. time) using the
Turing machine model of computation

I Resources are measured as a function
f : N→ N of the input length
I f (n) tells us the maximum number of resources the

machine could use on all possible inputs of size n
I “Worst case analysis”

I Input length n is the number of symbols in the
input string on the tape

I The input string may encode an object with a
different size (e.g. graph with n vertices vs.
adjacency matrix with n2 elements)

3 / 18



Worst case analysis

I We measure resources (e.g. time) using the
Turing machine model of computation

I Resources are measured as a function
f : N→ N of the input length
I f (n) tells us the maximum number of resources the

machine could use on all possible inputs of size n
I “Worst case analysis”

I Input length n is the number of symbols in the
input string on the tape

I The input string may encode an object with a
different size (e.g. graph with n vertices vs.
adjacency matrix with n2 elements)

3 / 18



Worst case analysis

I We measure resources (e.g. time) using the
Turing machine model of computation

I Resources are measured as a function
f : N→ N of the input length
I f (n) tells us the maximum number of resources the

machine could use on all possible inputs of size n
I “Worst case analysis”

I Input length n is the number of symbols in the
input string on the tape
I The input string may encode an object with a

different size (e.g. graph with n vertices vs.
adjacency matrix with n2 elements)

3 / 18



Algorithm running time

L = {0k1k |k ≥ 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

The machine runs in 5 seconds. Is that “fast”?

4 / 18



Algorithm running time

L = {0k1k |k ≥ 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

The machine runs in 5 seconds. Is that “fast”?

4 / 18



Algorithm running time

L = {0k1k |k ≥ 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

The machine runs in 5 seconds. Is that “fast”?

4 / 18



Algorithm running time

L = {0k1k |k ≥ 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

The machine runs in 5 seconds. Is that “fast”?

4 / 18



Algorithm running time

L = {0k1k |k ≥ 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

The machine runs in 5 seconds. Is that “fast”?

4 / 18



Algorithm running time

L = {0k1k |k ≥ 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

The machine runs in 5 seconds. Is that “fast”?

4 / 18



Algorithm running time

L = {0k1k |k ≥ 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

The machine runs in 5 seconds. Is that “fast”?

4 / 18



Algorithm running time

L = {0k1k |k ≥ 0}
How “fast” is the following machine to decide L?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

The machine runs in 5 seconds. Is that “fast”?

4 / 18



Physical running time

The physical running time of a machine is
important! But it depends on...

I Hardware

I Input size/structure

I Perhaps the temperature of the room on that
particular day?

None of these are properties of the actual
algorithm!

5 / 18



Physical running time

The physical running time of a machine is
important! But it depends on...

I Hardware

I Input size/structure

I Perhaps the temperature of the room on that
particular day?

None of these are properties of the actual
algorithm!

5 / 18



Physical running time

The physical running time of a machine is
important! But it depends on...

I Hardware

I Input size/structure

I Perhaps the temperature of the room on that
particular day?

None of these are properties of the actual
algorithm!

5 / 18



Physical running time

The physical running time of a machine is
important! But it depends on...

I Hardware

I Input size/structure

I Perhaps the temperature of the room on that
particular day?

None of these are properties of the actual
algorithm!

5 / 18



Physical running time

The physical running time of a machine is
important! But it depends on...

I Hardware

I Input size/structure

I Perhaps the temperature of the room on that
particular day?

None of these are properties of the actual
algorithm!

5 / 18



Time Complexity

I Let M be a Turing machine

I Def: The time complexity of M is a function

T : N→ N

where T (n) is the maximum number of steps
that M runs for on an input of length n

I We say “M runs in time T (n)”

I The running time of an algorithm is the running
time of a TM that implements the algorithm

6 / 18



Time Complexity

I Let M be a Turing machine

I Def: The time complexity of M is a function

T : N→ N

where T (n) is the maximum number of steps
that M runs for on an input of length n

I We say “M runs in time T (n)”

I The running time of an algorithm is the running
time of a TM that implements the algorithm

6 / 18



Time Complexity

I Let M be a Turing machine

I Def: The time complexity of M is a function

T : N→ N

where T (n) is the maximum number of steps
that M runs for on an input of length n

I We say “M runs in time T (n)”

I The running time of an algorithm is the running
time of a TM that implements the algorithm

6 / 18



Time Complexity

I Let M be a Turing machine

I Def: The time complexity of M is a function

T : N→ N

where T (n) is the maximum number of steps
that M runs for on an input of length n

I We say “M runs in time T (n)”

I The running time of an algorithm is the running
time of a TM that implements the algorithm

6 / 18



Time Complexity

I Let M be a Turing machine

I Def: The time complexity of M is a function

T : N→ N

where T (n) is the maximum number of steps
that M runs for on an input of length n

I We say “M runs in time T (n)”

I The running time of an algorithm is the running
time of a TM that implements the algorithm

6 / 18



Time Complexity

I Generally we don’t care about the exact
number of steps that the machine takes

I Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

I What is the “order of magnitude” for the
algorithm runtime?

I How does the algorithm “scale”?

I As the input gets bigger, how many extra steps will
the algorithm require?

7 / 18



Time Complexity

I Generally we don’t care about the exact
number of steps that the machine takes

I Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

I What is the “order of magnitude” for the
algorithm runtime?

I How does the algorithm “scale”?

I As the input gets bigger, how many extra steps will
the algorithm require?

7 / 18



Time Complexity

I Generally we don’t care about the exact
number of steps that the machine takes

I Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

I What is the “order of magnitude” for the
algorithm runtime?

I How does the algorithm “scale”?

I As the input gets bigger, how many extra steps will
the algorithm require?

7 / 18



Time Complexity

I Generally we don’t care about the exact
number of steps that the machine takes

I Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

I What is the “order of magnitude” for the
algorithm runtime?

I How does the algorithm “scale”?

I As the input gets bigger, how many extra steps will
the algorithm require?

7 / 18



Time Complexity

I Generally we don’t care about the exact
number of steps that the machine takes

I Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

I What is the “order of magnitude” for the
algorithm runtime?

I How does the algorithm “scale”?

I As the input gets bigger, how many extra steps will
the algorithm require?

7 / 18



Time Complexity

I Generally we don’t care about the exact
number of steps that the machine takes

I Instead, we ask: what is the relationship
between the size of the input and the number
of steps that the algorithm takes?

I What is the “order of magnitude” for the
algorithm runtime?

I How does the algorithm “scale”?
I As the input gets bigger, how many extra steps will

the algorithm require?

7 / 18



Big-O Notation

I Let f (n) and g(n) be functions

I We say f (n) is O(g(n)) if there exists a
constant c , and a cutoff point n0, such that for
all n ≥ n0

f (n) ≤ c · g(n)

8 / 18



Big-O Notation

I Let f (n) and g(n) be functions

I We say f (n) is O(g(n)) if there exists a
constant c , and a cutoff point n0, such that for
all n ≥ n0

f (n) ≤ c · g(n)

8 / 18



Big-O Notation

I Let f (n) and g(n) be functions

I We say f (n) is O(g(n)) if there exists a
constant c , and a cutoff point n0, such that for
all n ≥ n0

f (n) ≤ c · g(n)

8 / 18



Big-O Notation

I Let f (n) and g(n) be functions

I We say f (n) is O(g(n)) if there exists a
constant c , and a cutoff point n0, such that for
all n ≥ n0

f (n) ≤ c · g(n)

8 / 18



Big-O Runtime

I Let T (n) be the runtime for a machine M
I To convert T (n) to Big-O notation:

1. Remove all “lower order” terms
2. Remove any constant factors

I Example:

T (n) = 5n3 + 17n2 log(n) + 3.2n1.5 + 19747487584

→ 5n3

→ O(n3)

9 / 18



Big-O Runtime

I Let T (n) be the runtime for a machine M

I To convert T (n) to Big-O notation:

1. Remove all “lower order” terms
2. Remove any constant factors

I Example:

T (n) = 5n3 + 17n2 log(n) + 3.2n1.5 + 19747487584

→ 5n3

→ O(n3)

9 / 18



Big-O Runtime

I Let T (n) be the runtime for a machine M
I To convert T (n) to Big-O notation:

1. Remove all “lower order” terms
2. Remove any constant factors

I Example:

T (n) = 5n3 + 17n2 log(n) + 3.2n1.5 + 19747487584

→ 5n3

→ O(n3)

9 / 18



Big-O Runtime

I Let T (n) be the runtime for a machine M
I To convert T (n) to Big-O notation:

1. Remove all “lower order” terms

2. Remove any constant factors

I Example:

T (n) = 5n3 + 17n2 log(n) + 3.2n1.5 + 19747487584

→ 5n3

→ O(n3)

9 / 18



Big-O Runtime

I Let T (n) be the runtime for a machine M
I To convert T (n) to Big-O notation:

1. Remove all “lower order” terms
2. Remove any constant factors

I Example:

T (n) = 5n3 + 17n2 log(n) + 3.2n1.5 + 19747487584

→ 5n3

→ O(n3)

9 / 18



Big-O Runtime

I Let T (n) be the runtime for a machine M
I To convert T (n) to Big-O notation:

1. Remove all “lower order” terms
2. Remove any constant factors

I Example:

T (n) = 5n3 + 17n2 log(n) + 3.2n1.5 + 19747487584

→ 5n3

→ O(n3)

9 / 18



Runtime Analysis Example
What is the time complexity of the following TM to
decide L = {0k1k |k ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

O(n) to check the input format
O(n) loop iterations
O(n) per loop iteration
O(n) + O(n) · O(n) = O(n2)

10 / 18



Runtime Analysis Example
What is the time complexity of the following TM to
decide L = {0k1k |k ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

O(n) to check the input format

O(n) loop iterations
O(n) per loop iteration
O(n) + O(n) · O(n) = O(n2)

10 / 18



Runtime Analysis Example
What is the time complexity of the following TM to
decide L = {0k1k |k ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

O(n) to check the input format
O(n) loop iterations

O(n) per loop iteration
O(n) + O(n) · O(n) = O(n2)

10 / 18



Runtime Analysis Example
What is the time complexity of the following TM to
decide L = {0k1k |k ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

O(n) to check the input format
O(n) loop iterations
O(n) per loop iteration

O(n) + O(n) · O(n) = O(n2)

10 / 18



Runtime Analysis Example
What is the time complexity of the following TM to
decide L = {0k1k |k ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Repeat the following while both 0s and 1s are
on the tape:

2.1 Scan across the tape, erasing a single 0 and a
single 1

3. If the tape is empty, accept. Otherwise, reject.

O(n) to check the input format
O(n) loop iterations
O(n) per loop iteration
O(n) + O(n) · O(n) = O(n2)

10 / 18



Complexity of 0k1k

I The language L = {0k1k |k ≥ 0} can be
recognized in O(n2) time

I In fact, it an be recognized in O(n log n) time
(Sipser)

I Can we do better?

I It turns out, we cannot!
I ...on a single-tape TM

11 / 18



Complexity of 0k1k

I The language L = {0k1k |k ≥ 0} can be
recognized in O(n2) time

I In fact, it an be recognized in O(n log n) time
(Sipser)

I Can we do better?

I It turns out, we cannot!
I ...on a single-tape TM

11 / 18



Complexity of 0k1k

I The language L = {0k1k |k ≥ 0} can be
recognized in O(n2) time

I In fact, it an be recognized in O(n log n) time
(Sipser)

I Can we do better?

I It turns out, we cannot!
I ...on a single-tape TM

11 / 18



Complexity of 0k1k

I The language L = {0k1k |k ≥ 0} can be
recognized in O(n2) time

I In fact, it an be recognized in O(n log n) time
(Sipser)

I Can we do better?
I It turns out, we cannot!

I ...on a single-tape TM

11 / 18



Complexity of 0k1k

I The language L = {0k1k |k ≥ 0} can be
recognized in O(n2) time

I In fact, it an be recognized in O(n log n) time
(Sipser)

I Can we do better?
I It turns out, we cannot!
I ...on a single-tape TM

11 / 18



Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0n1n|n ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Read the 0’s on tape 1, copy them onto tape 2

3. Read the 1’s on tape 1, cross off 0’s on tape 2

4. If the 0’s and 1’s run out at the same time,
accept; otherwise reject.

O(n) to check the input format
O(n) to read the 0’s
O(n) to read the 1’s
O(n) + O(n) + O(n) = O(n)

12 / 18



Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0n1n|n ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Read the 0’s on tape 1, copy them onto tape 2

3. Read the 1’s on tape 1, cross off 0’s on tape 2

4. If the 0’s and 1’s run out at the same time,
accept; otherwise reject.

O(n) to check the input format

O(n) to read the 0’s
O(n) to read the 1’s
O(n) + O(n) + O(n) = O(n)

12 / 18



Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0n1n|n ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Read the 0’s on tape 1, copy them onto tape 2

3. Read the 1’s on tape 1, cross off 0’s on tape 2

4. If the 0’s and 1’s run out at the same time,
accept; otherwise reject.

O(n) to check the input format
O(n) to read the 0’s

O(n) to read the 1’s
O(n) + O(n) + O(n) = O(n)

12 / 18



Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0n1n|n ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Read the 0’s on tape 1, copy them onto tape 2

3. Read the 1’s on tape 1, cross off 0’s on tape 2

4. If the 0’s and 1’s run out at the same time,
accept; otherwise reject.

O(n) to check the input format
O(n) to read the 0’s
O(n) to read the 1’s

O(n) + O(n) + O(n) = O(n)

12 / 18



Runtime Analysis Example
What is the time complexity of the following 2-tape
TM to decide L = {0n1n|n ≥ 0}?

1. Scan across the tape and reject if a 0 is found
to the right of a 1

2. Read the 0’s on tape 1, copy them onto tape 2

3. Read the 1’s on tape 1, cross off 0’s on tape 2

4. If the 0’s and 1’s run out at the same time,
accept; otherwise reject.

O(n) to check the input format
O(n) to read the 0’s
O(n) to read the 1’s
O(n) + O(n) + O(n) = O(n)

12 / 18



Common Runtimes

I O(1) – “constant”

I O(log(n)) – “logarithmic”

I O(n) – “linear”

I O(n2) – “quadratic”

I O(nc) = nO(1) = cO(log(n)) – “polynomial”

I O(2n
c

) – “exponential”

13 / 18



Common Runtimes

I O(1) – “constant”

I O(log(n)) – “logarithmic”

I O(n) – “linear”

I O(n2) – “quadratic”

I O(nc) = nO(1) = cO(log(n)) – “polynomial”

I O(2n
c

) – “exponential”

13 / 18



Common Runtimes

I O(1) – “constant”

I O(log(n)) – “logarithmic”

I O(n) – “linear”

I O(n2) – “quadratic”

I O(nc) = nO(1) = cO(log(n)) – “polynomial”

I O(2n
c

) – “exponential”

13 / 18



Common Runtimes

I O(1) – “constant”

I O(log(n)) – “logarithmic”

I O(n) – “linear”

I O(n2) – “quadratic”

I O(nc) = nO(1) = cO(log(n)) – “polynomial”

I O(2n
c

) – “exponential”

13 / 18



Common Runtimes

I O(1) – “constant”

I O(log(n)) – “logarithmic”

I O(n) – “linear”

I O(n2) – “quadratic”

I O(nc) = nO(1) = cO(log(n)) – “polynomial”

I O(2n
c

) – “exponential”

13 / 18



Common Runtimes

I O(1) – “constant”

I O(log(n)) – “logarithmic”

I O(n) – “linear”

I O(n2) – “quadratic”

I O(nc) = nO(1) = cO(log(n)) – “polynomial”

I O(2n
c

) – “exponential”

13 / 18



Common Runtimes

I O(1) – “constant”

I O(log(n)) – “logarithmic”

I O(n) – “linear”

I O(n2) – “quadratic”

I O(nc) = nO(1) = cO(log(n)) – “polynomial”

I O(2n
c

) – “exponential”

13 / 18



Models of computation in complexity

I Our choice of model of computation did not
affect our computability results

I A single-tape Turing machine is just as robust as
any other model

I The previous example shows that our choice of
model does affect complexity results

I A single-tape Turing machine isn’t as fast as some
other models

I For the rest of this course, a single-tape TM
will still suffice (but we need to justify this)

I For an algorithms course, we typically analyze
complexity using models that are more
expressive than a single-tape TM

14 / 18



Models of computation in complexity
I Our choice of model of computation did not

affect our computability results

I A single-tape Turing machine is just as robust as
any other model

I The previous example shows that our choice of
model does affect complexity results

I A single-tape Turing machine isn’t as fast as some
other models

I For the rest of this course, a single-tape TM
will still suffice (but we need to justify this)

I For an algorithms course, we typically analyze
complexity using models that are more
expressive than a single-tape TM

14 / 18



Models of computation in complexity
I Our choice of model of computation did not

affect our computability results
I A single-tape Turing machine is just as robust as

any other model

I The previous example shows that our choice of
model does affect complexity results

I A single-tape Turing machine isn’t as fast as some
other models

I For the rest of this course, a single-tape TM
will still suffice (but we need to justify this)

I For an algorithms course, we typically analyze
complexity using models that are more
expressive than a single-tape TM

14 / 18



Models of computation in complexity
I Our choice of model of computation did not

affect our computability results
I A single-tape Turing machine is just as robust as

any other model

I The previous example shows that our choice of
model does affect complexity results

I A single-tape Turing machine isn’t as fast as some
other models

I For the rest of this course, a single-tape TM
will still suffice (but we need to justify this)

I For an algorithms course, we typically analyze
complexity using models that are more
expressive than a single-tape TM

14 / 18



Models of computation in complexity
I Our choice of model of computation did not

affect our computability results
I A single-tape Turing machine is just as robust as

any other model

I The previous example shows that our choice of
model does affect complexity results
I A single-tape Turing machine isn’t as fast as some

other models

I For the rest of this course, a single-tape TM
will still suffice (but we need to justify this)

I For an algorithms course, we typically analyze
complexity using models that are more
expressive than a single-tape TM

14 / 18



Models of computation in complexity
I Our choice of model of computation did not

affect our computability results
I A single-tape Turing machine is just as robust as

any other model

I The previous example shows that our choice of
model does affect complexity results
I A single-tape Turing machine isn’t as fast as some

other models

I For the rest of this course, a single-tape TM
will still suffice (but we need to justify this)

I For an algorithms course, we typically analyze
complexity using models that are more
expressive than a single-tape TM

14 / 18



Models of computation in complexity
I Our choice of model of computation did not

affect our computability results
I A single-tape Turing machine is just as robust as

any other model

I The previous example shows that our choice of
model does affect complexity results
I A single-tape Turing machine isn’t as fast as some

other models

I For the rest of this course, a single-tape TM
will still suffice (but we need to justify this)

I For an algorithms course, we typically analyze
complexity using models that are more
expressive than a single-tape TM

14 / 18



Complexity of multi-tape TMs
Theorem: Any language that can be recognized by
a k-tape TM in O(T (n)) time can be recognized by
a single-tape TM in O(T (n)2) time

Proof Idea:

I Simulate the original k tapes on k separate
sections of the single tape

I O(T (n)) simulation rounds

I O(T (n)) steps per round

I Remark: If a TM runs in O(T (n)) time, it
touches at most O(T (n)) tape squares

15 / 18



Complexity of multi-tape TMs
Theorem: Any language that can be recognized by
a k-tape TM in O(T (n)) time can be recognized by
a single-tape TM in O(T (n)2) time

Proof Idea:

I Simulate the original k tapes on k separate
sections of the single tape

I O(T (n)) simulation rounds

I O(T (n)) steps per round

I Remark: If a TM runs in O(T (n)) time, it
touches at most O(T (n)) tape squares

15 / 18



Complexity of multi-tape TMs
Theorem: Any language that can be recognized by
a k-tape TM in O(T (n)) time can be recognized by
a single-tape TM in O(T (n)2) time

Proof Idea:

I Simulate the original k tapes on k separate
sections of the single tape

I O(T (n)) simulation rounds

I O(T (n)) steps per round

I Remark: If a TM runs in O(T (n)) time, it
touches at most O(T (n)) tape squares

15 / 18



Complexity of multi-tape TMs
Theorem: Any language that can be recognized by
a k-tape TM in O(T (n)) time can be recognized by
a single-tape TM in O(T (n)2) time

Proof Idea:

I Simulate the original k tapes on k separate
sections of the single tape

I O(T (n)) simulation rounds

I O(T (n)) steps per round

I Remark: If a TM runs in O(T (n)) time, it
touches at most O(T (n)) tape squares

15 / 18



Complexity of multi-tape TMs
Theorem: Any language that can be recognized by
a k-tape TM in O(T (n)) time can be recognized by
a single-tape TM in O(T (n)2) time

Proof Idea:

I Simulate the original k tapes on k separate
sections of the single tape

I O(T (n)) simulation rounds

I O(T (n)) steps per round

I Remark: If a TM runs in O(T (n)) time, it
touches at most O(T (n)) tape squares

15 / 18



Complexity of multi-tape TMs
Theorem: Any language that can be recognized by
a k-tape TM in O(T (n)) time can be recognized by
a single-tape TM in O(T (n)2) time

Proof Idea:

I Simulate the original k tapes on k separate
sections of the single tape

I O(T (n)) simulation rounds

I O(T (n)) steps per round

I Remark: If a TM runs in O(T (n)) time, it
touches at most O(T (n)) tape squares

15 / 18



Complexity of multi-tape TMs

1. Repeat the following O(T (n)) times:

1.1 Scan across the tape, and update each tape’s
contents

O(T (n)) rounds
k · O(T (n)) = O(T (n)) to scan the k sections
O(T (n)) · O(T (n)) = O(T (n)2)

16 / 18



Complexity of multi-tape TMs

1. Repeat the following O(T (n)) times:

1.1 Scan across the tape, and update each tape’s
contents

O(T (n)) rounds
k · O(T (n)) = O(T (n)) to scan the k sections
O(T (n)) · O(T (n)) = O(T (n)2)

16 / 18



Complexity of multi-tape TMs

1. Repeat the following O(T (n)) times:
1.1 Scan across the tape, and update each tape’s

contents

O(T (n)) rounds
k · O(T (n)) = O(T (n)) to scan the k sections
O(T (n)) · O(T (n)) = O(T (n)2)

16 / 18



Complexity of multi-tape TMs

1. Repeat the following O(T (n)) times:
1.1 Scan across the tape, and update each tape’s

contents

O(T (n)) rounds

k · O(T (n)) = O(T (n)) to scan the k sections
O(T (n)) · O(T (n)) = O(T (n)2)

16 / 18



Complexity of multi-tape TMs

1. Repeat the following O(T (n)) times:
1.1 Scan across the tape, and update each tape’s

contents

O(T (n)) rounds
k · O(T (n)) = O(T (n)) to scan the k sections

O(T (n)) · O(T (n)) = O(T (n)2)

16 / 18



Complexity of multi-tape TMs

1. Repeat the following O(T (n)) times:
1.1 Scan across the tape, and update each tape’s

contents

O(T (n)) rounds
k · O(T (n)) = O(T (n)) to scan the k sections
O(T (n)) · O(T (n)) = O(T (n)2)

16 / 18



Complexity of multi-tape TMs

I It is often more convenient to describe our
algorithm with a multi-tape TM

I We only incur a polynomial slowdown when we
convert the algorithm to a single-tape TM

I We will see that this is good enough for the
problems we are exploring in this course

17 / 18



Complexity of multi-tape TMs

I It is often more convenient to describe our
algorithm with a multi-tape TM

I We only incur a polynomial slowdown when we
convert the algorithm to a single-tape TM

I We will see that this is good enough for the
problems we are exploring in this course

17 / 18



Complexity of multi-tape TMs

I It is often more convenient to describe our
algorithm with a multi-tape TM

I We only incur a polynomial slowdown when we
convert the algorithm to a single-tape TM

I We will see that this is good enough for the
problems we are exploring in this course

17 / 18



Complexity of multi-tape TMs

I It is often more convenient to describe our
algorithm with a multi-tape TM

I We only incur a polynomial slowdown when we
convert the algorithm to a single-tape TM

I We will see that this is good enough for the
problems we are exploring in this course

17 / 18



Extended Church-Turing Thesis

Anything that can be computed in time O(T (n))
on a “physical computer” can be computed in time
O(T (n)c) on a Turing machine

I An algorithm on any type of machine can be
converted to a TM algorithm with only a
polynomial-time slowdown

I TMs formalize our intuitive notion of
(efficient) algorithms

I Quantum computers may prove to be an
exception

18 / 18



Extended Church-Turing Thesis

Anything that can be computed in time O(T (n))
on a “physical computer” can be computed in time
O(T (n)c) on a Turing machine

I An algorithm on any type of machine can be
converted to a TM algorithm with only a
polynomial-time slowdown

I TMs formalize our intuitive notion of
(efficient) algorithms

I Quantum computers may prove to be an
exception

18 / 18



Extended Church-Turing Thesis

Anything that can be computed in time O(T (n))
on a “physical computer” can be computed in time
O(T (n)c) on a Turing machine

I An algorithm on any type of machine can be
converted to a TM algorithm with only a
polynomial-time slowdown

I TMs formalize our intuitive notion of
(efficient) algorithms

I Quantum computers may prove to be an
exception

18 / 18



Extended Church-Turing Thesis

Anything that can be computed in time O(T (n))
on a “physical computer” can be computed in time
O(T (n)c) on a Turing machine

I An algorithm on any type of machine can be
converted to a TM algorithm with only a
polynomial-time slowdown

I TMs formalize our intuitive notion of
(efficient) algorithms

I Quantum computers may prove to be an
exception

18 / 18



Extended Church-Turing Thesis

Anything that can be computed in time O(T (n))
on a “physical computer” can be computed in time
O(T (n)c) on a Turing machine

I An algorithm on any type of machine can be
converted to a TM algorithm with only a
polynomial-time slowdown

I TMs formalize our intuitive notion of
(efficient) algorithms

I Quantum computers may prove to be an
exception

18 / 18


