Theory of Computation Turing machine closure properties

Arjun Chandrasekhar

Turing Machine Closure Properties

- We have seen that regular languages are closed under complement, union, intersection, concatenation, star, shuffle, ...
- What operations are decidable languages closed under?
- What operations are recursively enumerable (RE) langauges closed under?

Turing Machines as Java Programs

- For these problems, you can always think of Turing Machines as Java programs
 - Or Python if you prefer!
 - Or Haskell if you're streets ahead :)
 - Or (literally) ANY language
- We don't need tape-level descriptions
- Java programs are algorithms, and algorithms are Turing machines (Church-Turing thesis)

 Let's say I have two java programs called Foo.java, and Bar.java

- Each program a string w as input and prints out either ACCEPT or REJECT
- Let's say each program is guaranteed to halt
- How would you write a java program called FooBar.java that checks if a string w is accepted by either Foo.java or by Bar.java (or both)?

FooBar.java does the following:

- 1. FooBar.java takes w as input
- 2. Run Foo.java and pass w as the input
- 3. Run Bar.java and pass w as the input
- If either program prints ACCEPT, then FooBar.java prints ACCEPT. Otherwise, it prints REJECT

- Let's say I have two java programs called Foo.java, and Bar.java
 - Each program a string w as input and prints out either ACCEPT or REJECT
 - Now let's assume that either program could go into an infinite loop.

How would you write a java program called FooBar.java that checks if a string w is accepted by either Foo.java or by Bar.java (or both)?

FooBar.java does the following:

- 1. FooBar.java takes w as input
- 2. Run Foo.java and pass w as the input
- 3. Run Bar.java and pass w as the input
- If either program prints ACCEPT, then FooBar.java prints ACCEPT. Otherwise, it prints REJECT

FooBar.java does the following:

- 1. FooBar.java takes w as input
- 2. Run Foo.java and pass w as the input
- 3. Run Bar.java and pass w as the input
- If either program prints ACCEPT, then FooBar.java prints ACCEPT. Otherwise, it prints REJECT

Will this work?

FooBar.java does the following:

- 1. FooBar.java takes w as input
- 2. Run Foo.java and pass *w* as the input This might loop, and we'll never get to run Bar!
- 3. Run Bar.java and pass w as the input
- 4. If either program prints ACCEPT, then FooBar.java prints ACCEPT. Otherwise, it prints REJECT

Will this work?

FooBar.java does the following:

- 1. FooBar.java takes w as input
- 2. Run Foo.java and Bar.java in parallel
 - Use some sort of timer to let the machines take turns running
- 3. If either program ever prints out ACCEPT, then FooBar.java prints ACCEPT.
- 4. If both print REJECT, Foobar.java prints REJECT.
- 5. Otherwise FooBar.java runs forever.

Closure of Decidable Languages under Union

Let's prove that decidable languages are closed under union

Want to show that if A and B are decidable, then A ∪ B is decidable

Closure of Decidable Languages under Union

Suppose A and B are decidable

- There are machines M_A, M_B that decide A and B
- Create a machine M to decide $A \cup B$
- M does the following on input w:
 - 1. Run M_A on w
 - 2. Run M_B on w
 - 3. If either machine accepts, *M* accepts. Otherwise, *M* rejects

10

Let's prove that RE languages are closed under union

► Want to show if A and B are RE, then A ∪ B is RE

Suppose A and B are RE

- There are machines M_A, M_B that recognize A and B
- Create a machine M to recognize $A \cup B$
- ► *M* does the following on input *w*:
 - 1. Run M_A on w
 - 2. Run M_B on w
 - 3. If either machine accepts, *M* accepts. Otherwise, *M* rejects

 $12 \, / \, 30$

Suppose A and B are RE

- There are machines M_A, M_B that recognize A and B
- Create a machine M to recognize $A \cup B$
- ► *M* does the following on input *w*:
 - 1. Run M_A on w
 - 2. Run M_B on w
 - 3. If either machine accepts, *M* accepts. Otherwise, *M* rejects

12

Will this work?

Suppose A and B are RE

- There are machines M_A, M_B that recognize A and B
- Create a machine M to recognize $A \cup B$
- ► *M* does the following on input *w*:
 - 1. Run *M_A* on *w* This might loop forever!
 - 2. Run M_B on w
 - 3. If either machine accepts, M accepts. Otherwise, M rejects

12

Will this work?

Suppose A and B are RE

- There are machines M_A, M_B that recognize A and B
- Create a machine M to recognize $A \cup B$
- ► *M* does the following on input *w*:
 - 1. Run M_A and M_B in parallel
 - 1.1 Run M_A for one step
 - 1.2 Run M_B for one step
 - 1.3 Run M_A for one step
 - 1.4 Run M_B for one step

1.5 ...

- 2. If either M_A or M_B (ever) accepts, then M accepts
- 3. If neither machine (ever) accepts, then *M* will never accept which is sufficient

Suppose A and B are RE

- There are machines M_A, M_B that recognize A and B
- Create a <u>nondeterministic</u> machine *M* to recognize *A* ∪ *B*
- ► *M* does the following on input *w*:
 - 1. On input *w*, nondeterministically guess whether to $w \in A$ or $w \in B$
 - 2. Either run M_A or M_B , depending on which language you guessed
 - 3. If the guessed machine accepts M will accept
 - 4. If neither machine accepts, *M* will not accept no matter how it guesses (which is sufficient)
- Every nondeterministic TM can be converted to a deterministic TM
 14 /

Closure Properties of Turing Machines

- Prove that decidable languages are closed under intersection
- Prove that RE languages are closed under intersection

Closure of Decidable Languages under Intersection

- Suppose A and B are decidable
- Let M_A and M_B decide A and B, respectively
- We construct a machine M to decide $A \cap B$
- M does the following:
 - 1. M takes w as input
 - 2. Run M_A on w
 - 3. Run M_B on w
 - 4. If M_A and M_B both accept w, then M accepts w
 - 5. If either machine rejects, then M rejects

Closure of RE Languages under Intersection

- Suppose A and B are RE
- Let M_A and M_B recognize A and B, respectively
- We construct a machine M to recognize $A \cap B$
- M does the following:
 - 1. M takes w as input
 - 2. Run M_A and M_B in parallel on w
 - 3. If M_A and M_B both accept, M accepts w
 - 4. If $w \notin A \cap B$ then M might loop forever but that's ok

Closure Properties of Turing Machines

For any language A, let

$$\#(A) = \{w = w_1 \# w_2 \# \dots \# w_n | w_i \in A\}$$

- i.e. several strings in A each separated by a # sign
 - Prove that decidable languages are closed under #
 - Prove that RE languages are closed under #

$18 \, / \, 30$

Closure of Decidable Languages under

- Suppose A is decidable
- Let M_A decide A
- Create a machine M to decide #(A).
- M does the following:
 - 1. M takes w as input
 - 2. Check that $w = w_1 \# w_2 \dots \# w_n$ (i.e. correct format)
 - 3. Run M_A on each w_i
 - 4. If M_A accepts each w_i accept. Otherwise, reject

$19 \, / \, 30$

Closure of RE Languages under

- Suppose A is RE
- Let M_A recognize A
- Create a machine M to recognize #(A)
- M does the following:
 - 1. M takes w as input
 - 2. Check that $w = w_1 \# w_2 \dots \# w_n$ (i.e. correct format)
 - 3. Run M_A in parallel on each w_i
 - 4. If M_A accepts each w_i , then M accepts w.
 - 5. If any $w_i \notin A$ then M may loop forever, and that's ok

Closure Properties of Turing Machines

Recall that for any language A, let

$$A^* = \{w = w_1 w_2 \dots w_n | w_i \in A\}$$

- Prove that decidable languages are closed under Kleene star
- Prove that RE languages are closed under Kleene star

Closure of Decidable Languages under Kleene Star

- Suppose A is decidable
- ► Let *M*_A decide A
- Create a machine M to decide A*
- M does the following:
 - 1. M takes w as input
 - 2. Try all possible ways of splitting up

 $w = w_1 w_2 \dots w_n$

Try all possible ways of splitting up w

Split 1: w w w w w w w ...

Split 2: w w w w w w w ...

Split 3: w w w w w w ...

Split 4: w w w w w w ... 22/30

Closure of Decidable Languages under Kleene Star

- Suppose A is decidable
- Let M_A decide A
- Create a machine M to decide A*
- M does the following:
 - 1. M takes w as input
 - 2. Try all possible ways of splitting up
 - $w = w_1 w_2 \dots w_n$
 - 2.1 For each way of splitting it up, run M_A on each w_i
 - 2.2 If M_A accepts each w_i , then M accepts
 - 2.3 Otherwise move on to the next way of splitting up w
 - 3. If all splits are rejected, then M rejects

$22 \, / \, 30$

- Suppose A is RE
- Let M_A recognize A
- Create a machine M to recognize A^* .
- M does the following:
 - 1. M takes w as input
 - 2. Try all possible ways of splitting up

 $w = w_1 w_2 \dots w_n$

- 2.1 For each way of splitting it up, run M_A on each w_i
- 2.2 If M_A accepts each w_i , then M accepts
- 2.3 Otherwise move on to the next way of splitting up w
- 3. If all splits are rejected, then M rejects

- Suppose A is RE
- Let M_A recognize A
- Create a machine M to recognize A^* .
- M does the following:
 - 1. M takes w as input
 - 2. Try all possible ways of splitting up

 $w = w_1 w_2 \dots w_n$

- 2.1 For each way of splitting it up, run M_A on each w_i
- 2.2 If M_A accepts each w_i , then M accepts
- 2.3 Otherwise move on to the next way of splitting up w
- 3. If all splits are rejected, then M rejects

Will this work?

$23 \, / \, 30$

- Suppose A is RE
- Let M_A recognize A
- Create a machine M to recognize A^* .
- M does the following:
 - 1. M takes w as input
 - 2. Try all possible ways of splitting up
 - $w = w_1 w_2 \dots w_n$
 - 2.1 For each way of splitting it up, run M_A on each w_i
 - 2.2 If M_A accepts each w_i , then M accepts
 - 2.3 Otherwise move on to the next way of splitting up w M_A may loop on some w_i , and we don't get to try other splits

23

3. If all splits are rejected, then M rejects

Will this work?

- Suppose A is RE
- Let M_A recognize A
- Create a machine M to recognize A^* .
- ► *M* does the following:
 - 1. M takes w as input
 - 2. Try all possible ways of splitting up
 - $w = w_1 w_2 \dots w_n$ in parallel
 - 2.1 For each way of splitting it up, run M_A on each w_i in parallel.
 - 3. If M_A accepts each w_i for any split, then M accepts
 - If every way of splitting up w fails, M may loop, but that's ok

Closure Properties of Turing Machines

- Suppose A is RE
- Let M_A recognize A
- Create a <u>nondeterministic</u> machine *M* to recognize *A*^{*} as follows:
 - 1. M takes w as input
 - 2. Nondeterministically guess how to split up $w = w_1 w_2 \dots w_n$
 - 3. Run M_A on each w_i in parallel
 - 4. If M_A accepts each w_i (i.e. we guessed correctly) then M accepts
- Every nondeterministic TM can be converted to a deterministic TM

 $25 \, / \, 30$

Closure Properties of Turing Machines

- Prove that decidable languages are closed under complement
- Prove that RE languages are closed under complement

Closure of Decidable Languages under Complement

- Suppose A is decidable
- \blacktriangleright Let M_A decide A
- Create a machine M to decide A^c
- M does the following:
 - 1. M takes w as input
 - 2. Run M_A on w
 - 3. If M_A accepts, M rejects
 - 4. If M_A rejects, M accepts
- M_A always halts, so M always halts
- *M* accepts $w \Leftrightarrow M_A$ rejects $w \Leftrightarrow w \notin A$

 $27 \, / \, 30$

- Suppose A is RE
- Let M_A recognize A
- Create a machine M to recognize A^c.
- M does the following:
 - 1. *M* takes *w* as input
 - 2. Run M_A on w
 - 3. If M_A accepts, M rejects
 - 4. If M_A rejects, M accepts

- Suppose A is RE
- Let M_A recognize A
- Create a machine M to recognize A^c.
- M does the following:
 - 1. *M* takes *w* as input
 - 2. Run M_A on w
 - 3. If M_A accepts, M rejects
 - 4. If M_A rejects, M accepts

Will this work?

- Suppose A is RE
- Let M_A recognize A
- Create a machine M to recognize A^c.
- M does the following:
 - 1. M takes w as input
 - 2. Run M_A on w
 - 3. If M_A accepts, M rejects
 - 4. If M_A rejects, M accepts
 - 5. If M_A loops, then M loops

M may not accept strings that are part of A^c Will this work?

- As it turns out, RE languages are NOT closed under complement.
- We will study techniques to prove such statements next week.

Closure Properties of Turing Machines

Recap

- Decidable languages are closed under union, intersection, complement, Kleene star
- RE languages are closed under union, intersection, Kleene star
 - We need to be careful and run machines/computation paths in parallel
- RE languages are not closed under complement