
Theory of Computation
Turing machine closure properties

Arjun Chandrasekhar

1 / 30



Turing Machine Closure Properties

I We have seen that regular languages are closed
under complement, union, intersection,
concatenation, star, shuffle, . . .

I What operations are decidable languages closed
under?

I What operations are recursively enumerable
(RE) langauges closed under?

2 / 30



Turing Machine Closure Properties

I We have seen that regular languages are closed
under complement, union, intersection,
concatenation, star, shuffle, . . .

I What operations are decidable languages closed
under?

I What operations are recursively enumerable
(RE) langauges closed under?

2 / 30



Turing Machine Closure Properties

I We have seen that regular languages are closed
under complement, union, intersection,
concatenation, star, shuffle, . . .

I What operations are decidable languages closed
under?

I What operations are recursively enumerable
(RE) langauges closed under?

2 / 30



Turing Machine Closure Properties

I We have seen that regular languages are closed
under complement, union, intersection,
concatenation, star, shuffle, . . .

I What operations are decidable languages closed
under?

I What operations are recursively enumerable
(RE) langauges closed under?

2 / 30



Turing Machines as Java Programs

I For these problems, you can always think of
Turing Machines as Java programs

I Or Python if you prefer!
I Or Haskell if you’re streets ahead :)
I Or (literally) ANY language

I We don’t need tape-level descriptions

I Java programs are algorithms, and algorithms
are Turing machines (Church-Turing thesis)

3 / 30



Turing Machines as Java Programs

I For these problems, you can always think of
Turing Machines as Java programs

I Or Python if you prefer!
I Or Haskell if you’re streets ahead :)
I Or (literally) ANY language

I We don’t need tape-level descriptions

I Java programs are algorithms, and algorithms
are Turing machines (Church-Turing thesis)

3 / 30



Turing Machines as Java Programs

I For these problems, you can always think of
Turing Machines as Java programs
I Or Python if you prefer!

I Or Haskell if you’re streets ahead :)
I Or (literally) ANY language

I We don’t need tape-level descriptions

I Java programs are algorithms, and algorithms
are Turing machines (Church-Turing thesis)

3 / 30



Turing Machines as Java Programs

I For these problems, you can always think of
Turing Machines as Java programs
I Or Python if you prefer!
I Or Haskell if you’re streets ahead :)

I Or (literally) ANY language

I We don’t need tape-level descriptions

I Java programs are algorithms, and algorithms
are Turing machines (Church-Turing thesis)

3 / 30



Turing Machines as Java Programs

I For these problems, you can always think of
Turing Machines as Java programs
I Or Python if you prefer!
I Or Haskell if you’re streets ahead :)
I Or (literally) ANY language

I We don’t need tape-level descriptions

I Java programs are algorithms, and algorithms
are Turing machines (Church-Turing thesis)

3 / 30



Turing Machines as Java Programs

I For these problems, you can always think of
Turing Machines as Java programs
I Or Python if you prefer!
I Or Haskell if you’re streets ahead :)
I Or (literally) ANY language

I We don’t need tape-level descriptions

I Java programs are algorithms, and algorithms
are Turing machines (Church-Turing thesis)

3 / 30



Turing Machines as Java Programs

I For these problems, you can always think of
Turing Machines as Java programs
I Or Python if you prefer!
I Or Haskell if you’re streets ahead :)
I Or (literally) ANY language

I We don’t need tape-level descriptions

I Java programs are algorithms, and algorithms
are Turing machines (Church-Turing thesis)

3 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java

I Each program a string w as input and prints out
either ACCEPT or REJECT

I Let’s say each program is guaranteed to halt

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

4 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java

I Each program a string w as input and prints out
either ACCEPT or REJECT

I Let’s say each program is guaranteed to halt

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

4 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java
I Each program a string w as input and prints out

either ACCEPT or REJECT

I Let’s say each program is guaranteed to halt

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

4 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java
I Each program a string w as input and prints out

either ACCEPT or REJECT
I Let’s say each program is guaranteed to halt

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

4 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java
I Each program a string w as input and prints out

either ACCEPT or REJECT
I Let’s say each program is guaranteed to halt

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

4 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

5 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

5 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

5 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

5 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

5 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java

I Each program a string w as input and prints out
either ACCEPT or REJECT

I Now let’s assume that either program could go
into an infinite loop.

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

6 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java

I Each program a string w as input and prints out
either ACCEPT or REJECT

I Now let’s assume that either program could go
into an infinite loop.

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

6 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java
I Each program a string w as input and prints out

either ACCEPT or REJECT

I Now let’s assume that either program could go
into an infinite loop.

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

6 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java
I Each program a string w as input and prints out

either ACCEPT or REJECT
I Now let’s assume that either program could go

into an infinite loop.

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

6 / 30



Closure of Java Programs under Union

I Let’s say I have two java programs called
Foo.java, and Bar.java
I Each program a string w as input and prints out

either ACCEPT or REJECT
I Now let’s assume that either program could go

into an infinite loop.

I How would you write a java program called
FooBar.java that checks if a string w is
accepted by either Foo.java or by Bar.java (or
both)?

6 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

Will this work?

7 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

Will this work?

7 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

Will this work?

7 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

Will this work?

7 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

Will this work?

7 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

Will this work?

7 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and pass w as the input
This might loop, and we’ll never get to run Bar!

3. Run Bar.java and pass w as the input

4. If either program prints ACCEPT, then
FooBar.java prints ACCEPT. Otherwise, it
prints REJECT

Will this work?

7 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input

2. Run Foo.java and Bar.java in parallel

I Use some sort of timer to let the machines take
turns running

3. If either program ever prints out ACCEPT,
then FooBar.java prints ACCEPT.

4. If both print REJECT, Foobar.java prints
REJECT.

5. Otherwise FooBar.java runs forever.

8 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input
2. Run Foo.java and Bar.java in parallel

I Use some sort of timer to let the machines take
turns running

3. If either program ever prints out ACCEPT,
then FooBar.java prints ACCEPT.

4. If both print REJECT, Foobar.java prints
REJECT.

5. Otherwise FooBar.java runs forever.

8 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input
2. Run Foo.java and Bar.java in parallel

I Use some sort of timer to let the machines take
turns running

3. If either program ever prints out ACCEPT,
then FooBar.java prints ACCEPT.

4. If both print REJECT, Foobar.java prints
REJECT.

5. Otherwise FooBar.java runs forever.

8 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input
2. Run Foo.java and Bar.java in parallel

I Use some sort of timer to let the machines take
turns running

3. If either program ever prints out ACCEPT,
then FooBar.java prints ACCEPT.

4. If both print REJECT, Foobar.java prints
REJECT.

5. Otherwise FooBar.java runs forever.

8 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input
2. Run Foo.java and Bar.java in parallel

I Use some sort of timer to let the machines take
turns running

3. If either program ever prints out ACCEPT,
then FooBar.java prints ACCEPT.

4. If both print REJECT, Foobar.java prints
REJECT.

5. Otherwise FooBar.java runs forever.

8 / 30



Closure of Java Programs under Union

FooBar.java does the following:

1. FooBar.java takes w as input
2. Run Foo.java and Bar.java in parallel

I Use some sort of timer to let the machines take
turns running

3. If either program ever prints out ACCEPT,
then FooBar.java prints ACCEPT.

4. If both print REJECT, Foobar.java prints
REJECT.

5. Otherwise FooBar.java runs forever.

8 / 30



Closure of Decidable Languages under
Union

Let’s prove that decidable languages are closed
under union

I Want to show that if A and B are decidable,
then A ∪ B is decidable

9 / 30



Closure of Decidable Languages under
Union

Let’s prove that decidable languages are closed
under union

I Want to show that if A and B are decidable,
then A ∪ B is decidable

9 / 30



Closure of Decidable Languages under
Union

Let’s prove that decidable languages are closed
under union

I Want to show that if A and B are decidable,
then A ∪ B is decidable

9 / 30



Closure of Decidable Languages under
Union

Suppose A and B are decidable

I There are machines MA,MB that decide A and
B

I Create a machine M to decide A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

10 / 30



Closure of Decidable Languages under
Union

Suppose A and B are decidable

I There are machines MA,MB that decide A and
B

I Create a machine M to decide A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

10 / 30



Closure of Decidable Languages under
Union

Suppose A and B are decidable

I There are machines MA,MB that decide A and
B

I Create a machine M to decide A ∪ B

I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

10 / 30



Closure of Decidable Languages under
Union

Suppose A and B are decidable

I There are machines MA,MB that decide A and
B

I Create a machine M to decide A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

10 / 30



Closure of Decidable Languages under
Union

Suppose A and B are decidable

I There are machines MA,MB that decide A and
B

I Create a machine M to decide A ∪ B
I M does the following on input w :

1. Run MA on w

2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

10 / 30



Closure of Decidable Languages under
Union

Suppose A and B are decidable

I There are machines MA,MB that decide A and
B

I Create a machine M to decide A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w

3. If either machine accepts, M accepts. Otherwise,
M rejects

10 / 30



Closure of Decidable Languages under
Union

Suppose A and B are decidable

I There are machines MA,MB that decide A and
B

I Create a machine M to decide A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

10 / 30



Closure of RE Languages under Union

Let’s prove that RE languages are closed under
union

I Want to show if A and B are RE, then A∪B is
RE

11 / 30



Closure of RE Languages under Union

Let’s prove that RE languages are closed under
union

I Want to show if A and B are RE, then A∪B is
RE

11 / 30



Closure of RE Languages under Union

Let’s prove that RE languages are closed under
union

I Want to show if A and B are RE, then A∪B is
RE

11 / 30



Closure of RE Languages under Union

Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

Will this work?

12 / 30



Closure of RE Languages under Union

Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

Will this work?

12 / 30



Closure of RE Languages under Union

Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B

I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

Will this work?

12 / 30



Closure of RE Languages under Union

Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

Will this work?

12 / 30



Closure of RE Languages under Union

Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA on w

2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

Will this work?

12 / 30



Closure of RE Languages under Union

Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w

3. If either machine accepts, M accepts. Otherwise,
M rejects

Will this work?

12 / 30



Closure of RE Languages under Union

Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

Will this work?

12 / 30



Closure of RE Languages under Union

Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA on w
2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

Will this work?

12 / 30



Closure of RE Languages under Union

Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA on w
This might loop forever!

2. Run MB on w
3. If either machine accepts, M accepts. Otherwise,

M rejects

Will this work?

12 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel

1.1 Run MA for one step
1.2 Run MB for one step
1.3 Run MA for one step
1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B

I M does the following on input w :

1. Run MA and MB in parallel

1.1 Run MA for one step
1.2 Run MB for one step
1.3 Run MA for one step
1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel

1.1 Run MA for one step
1.2 Run MB for one step
1.3 Run MA for one step
1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel

1.1 Run MA for one step
1.2 Run MB for one step
1.3 Run MA for one step
1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel
1.1 Run MA for one step

1.2 Run MB for one step
1.3 Run MA for one step
1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel
1.1 Run MA for one step
1.2 Run MB for one step

1.3 Run MA for one step
1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel
1.1 Run MA for one step
1.2 Run MB for one step
1.3 Run MA for one step

1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel
1.1 Run MA for one step
1.2 Run MB for one step
1.3 Run MA for one step
1.4 Run MB for one step

1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel
1.1 Run MA for one step
1.2 Run MB for one step
1.3 Run MA for one step
1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel
1.1 Run MA for one step
1.2 Run MB for one step
1.3 Run MA for one step
1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts

3. If neither machine (ever) accepts, then M will
never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE

I There are machines MA,MB that recognize A
and B

I Create a machine M to recognize A ∪ B
I M does the following on input w :

1. Run MA and MB in parallel
1.1 Run MA for one step
1.2 Run MB for one step
1.3 Run MA for one step
1.4 Run MB for one step
1.5 . . .

2. If either MA or MB (ever) accepts, then M accepts
3. If neither machine (ever) accepts, then M will

never accept - which is sufficient

13 / 30



Closure of RE Languages under Union
Suppose A and B are RE
I There are machines MA,MB that recognize A

and B

I Create a nondeterministic machine M to
recognize A ∪ B

I M does the following on input w :

1. On input w , nondeterministically guess whether to
w ∈ A or w ∈ B

2. Either run MA or MB , depending on which
language you guessed

3. If the guessed machine accepts M will accept
4. If neither machine accepts, M will not accept no

matter how it guesses (which is sufficient)

I Every nondeterministic TM can be converted
to a deterministic TM

14 / 30



Closure of RE Languages under Union
Suppose A and B are RE
I There are machines MA,MB that recognize A

and B
I Create a nondeterministic machine M to

recognize A ∪ B

I M does the following on input w :

1. On input w , nondeterministically guess whether to
w ∈ A or w ∈ B

2. Either run MA or MB , depending on which
language you guessed

3. If the guessed machine accepts M will accept
4. If neither machine accepts, M will not accept no

matter how it guesses (which is sufficient)

I Every nondeterministic TM can be converted
to a deterministic TM

14 / 30



Closure of RE Languages under Union
Suppose A and B are RE
I There are machines MA,MB that recognize A

and B
I Create a nondeterministic machine M to

recognize A ∪ B
I M does the following on input w :

1. On input w , nondeterministically guess whether to
w ∈ A or w ∈ B

2. Either run MA or MB , depending on which
language you guessed

3. If the guessed machine accepts M will accept
4. If neither machine accepts, M will not accept no

matter how it guesses (which is sufficient)

I Every nondeterministic TM can be converted
to a deterministic TM

14 / 30



Closure of RE Languages under Union
Suppose A and B are RE
I There are machines MA,MB that recognize A

and B
I Create a nondeterministic machine M to

recognize A ∪ B
I M does the following on input w :

1. On input w , nondeterministically guess whether to
w ∈ A or w ∈ B

2. Either run MA or MB , depending on which
language you guessed

3. If the guessed machine accepts M will accept
4. If neither machine accepts, M will not accept no

matter how it guesses (which is sufficient)

I Every nondeterministic TM can be converted
to a deterministic TM

14 / 30



Closure of RE Languages under Union
Suppose A and B are RE
I There are machines MA,MB that recognize A

and B
I Create a nondeterministic machine M to

recognize A ∪ B
I M does the following on input w :

1. On input w , nondeterministically guess whether to
w ∈ A or w ∈ B

2. Either run MA or MB , depending on which
language you guessed

3. If the guessed machine accepts M will accept
4. If neither machine accepts, M will not accept no

matter how it guesses (which is sufficient)

I Every nondeterministic TM can be converted
to a deterministic TM

14 / 30



Closure of RE Languages under Union
Suppose A and B are RE
I There are machines MA,MB that recognize A

and B
I Create a nondeterministic machine M to

recognize A ∪ B
I M does the following on input w :

1. On input w , nondeterministically guess whether to
w ∈ A or w ∈ B

2. Either run MA or MB , depending on which
language you guessed

3. If the guessed machine accepts M will accept

4. If neither machine accepts, M will not accept no
matter how it guesses (which is sufficient)

I Every nondeterministic TM can be converted
to a deterministic TM

14 / 30



Closure of RE Languages under Union
Suppose A and B are RE
I There are machines MA,MB that recognize A

and B
I Create a nondeterministic machine M to

recognize A ∪ B
I M does the following on input w :

1. On input w , nondeterministically guess whether to
w ∈ A or w ∈ B

2. Either run MA or MB , depending on which
language you guessed

3. If the guessed machine accepts M will accept
4. If neither machine accepts, M will not accept no

matter how it guesses (which is sufficient)

I Every nondeterministic TM can be converted
to a deterministic TM

14 / 30



Closure of RE Languages under Union
Suppose A and B are RE
I There are machines MA,MB that recognize A

and B
I Create a nondeterministic machine M to

recognize A ∪ B
I M does the following on input w :

1. On input w , nondeterministically guess whether to
w ∈ A or w ∈ B

2. Either run MA or MB , depending on which
language you guessed

3. If the guessed machine accepts M will accept
4. If neither machine accepts, M will not accept no

matter how it guesses (which is sufficient)

I Every nondeterministic TM can be converted
to a deterministic TM 14 / 30



Closure Properties of Turing Machines

I Prove that decidable languages are closed
under intersection

I Prove that RE languages are closed under
intersection

15 / 30



Closure of Decidable Languages under
Intersection

I Suppose A and B are decidable

I Let MA and MB decide A and B , respectively

I We construct a machine M to decide A ∩ B
I M does the following:

1. M takes w as input
2. Run MA on w
3. Run MB on w
4. If MA and MB both accept w , then M accepts w
5. If either machine rejects, then M rejects

16 / 30



Closure of Decidable Languages under
Intersection

I Suppose A and B are decidable

I Let MA and MB decide A and B , respectively

I We construct a machine M to decide A ∩ B
I M does the following:

1. M takes w as input
2. Run MA on w
3. Run MB on w
4. If MA and MB both accept w , then M accepts w
5. If either machine rejects, then M rejects

16 / 30



Closure of Decidable Languages under
Intersection

I Suppose A and B are decidable

I Let MA and MB decide A and B , respectively

I We construct a machine M to decide A ∩ B

I M does the following:

1. M takes w as input
2. Run MA on w
3. Run MB on w
4. If MA and MB both accept w , then M accepts w
5. If either machine rejects, then M rejects

16 / 30



Closure of Decidable Languages under
Intersection

I Suppose A and B are decidable

I Let MA and MB decide A and B , respectively

I We construct a machine M to decide A ∩ B
I M does the following:

1. M takes w as input
2. Run MA on w
3. Run MB on w
4. If MA and MB both accept w , then M accepts w
5. If either machine rejects, then M rejects

16 / 30



Closure of Decidable Languages under
Intersection

I Suppose A and B are decidable

I Let MA and MB decide A and B , respectively

I We construct a machine M to decide A ∩ B
I M does the following:

1. M takes w as input

2. Run MA on w
3. Run MB on w
4. If MA and MB both accept w , then M accepts w
5. If either machine rejects, then M rejects

16 / 30



Closure of Decidable Languages under
Intersection

I Suppose A and B are decidable

I Let MA and MB decide A and B , respectively

I We construct a machine M to decide A ∩ B
I M does the following:

1. M takes w as input
2. Run MA on w

3. Run MB on w
4. If MA and MB both accept w , then M accepts w
5. If either machine rejects, then M rejects

16 / 30



Closure of Decidable Languages under
Intersection

I Suppose A and B are decidable

I Let MA and MB decide A and B , respectively

I We construct a machine M to decide A ∩ B
I M does the following:

1. M takes w as input
2. Run MA on w
3. Run MB on w

4. If MA and MB both accept w , then M accepts w
5. If either machine rejects, then M rejects

16 / 30



Closure of Decidable Languages under
Intersection

I Suppose A and B are decidable

I Let MA and MB decide A and B , respectively

I We construct a machine M to decide A ∩ B
I M does the following:

1. M takes w as input
2. Run MA on w
3. Run MB on w
4. If MA and MB both accept w , then M accepts w

5. If either machine rejects, then M rejects

16 / 30



Closure of Decidable Languages under
Intersection

I Suppose A and B are decidable

I Let MA and MB decide A and B , respectively

I We construct a machine M to decide A ∩ B
I M does the following:

1. M takes w as input
2. Run MA on w
3. Run MB on w
4. If MA and MB both accept w , then M accepts w
5. If either machine rejects, then M rejects

16 / 30



Closure of RE Languages under
Intersection

I Suppose A and B are RE

I Let MA and MB recognize A and B ,
respectively

I We construct a machine M to recognize A ∩ B
I M does the following:

1. M takes w as input
2. Run MA and MB in parallel on w
3. If MA and MB both accept, M accepts w
4. If w /∈ A ∩ B then M might loop forever but that’s

ok

17 / 30



Closure of RE Languages under
Intersection

I Suppose A and B are RE

I Let MA and MB recognize A and B ,
respectively

I We construct a machine M to recognize A ∩ B
I M does the following:

1. M takes w as input
2. Run MA and MB in parallel on w
3. If MA and MB both accept, M accepts w
4. If w /∈ A ∩ B then M might loop forever but that’s

ok

17 / 30



Closure of RE Languages under
Intersection

I Suppose A and B are RE

I Let MA and MB recognize A and B ,
respectively

I We construct a machine M to recognize A ∩ B

I M does the following:

1. M takes w as input
2. Run MA and MB in parallel on w
3. If MA and MB both accept, M accepts w
4. If w /∈ A ∩ B then M might loop forever but that’s

ok

17 / 30



Closure of RE Languages under
Intersection

I Suppose A and B are RE

I Let MA and MB recognize A and B ,
respectively

I We construct a machine M to recognize A ∩ B
I M does the following:

1. M takes w as input
2. Run MA and MB in parallel on w
3. If MA and MB both accept, M accepts w
4. If w /∈ A ∩ B then M might loop forever but that’s

ok

17 / 30



Closure of RE Languages under
Intersection

I Suppose A and B are RE

I Let MA and MB recognize A and B ,
respectively

I We construct a machine M to recognize A ∩ B
I M does the following:

1. M takes w as input

2. Run MA and MB in parallel on w
3. If MA and MB both accept, M accepts w
4. If w /∈ A ∩ B then M might loop forever but that’s

ok

17 / 30



Closure of RE Languages under
Intersection

I Suppose A and B are RE

I Let MA and MB recognize A and B ,
respectively

I We construct a machine M to recognize A ∩ B
I M does the following:

1. M takes w as input
2. Run MA and MB in parallel on w

3. If MA and MB both accept, M accepts w
4. If w /∈ A ∩ B then M might loop forever but that’s

ok

17 / 30



Closure of RE Languages under
Intersection

I Suppose A and B are RE

I Let MA and MB recognize A and B ,
respectively

I We construct a machine M to recognize A ∩ B
I M does the following:

1. M takes w as input
2. Run MA and MB in parallel on w
3. If MA and MB both accept, M accepts w

4. If w /∈ A ∩ B then M might loop forever but that’s
ok

17 / 30



Closure of RE Languages under
Intersection

I Suppose A and B are RE

I Let MA and MB recognize A and B ,
respectively

I We construct a machine M to recognize A ∩ B
I M does the following:

1. M takes w as input
2. Run MA and MB in parallel on w
3. If MA and MB both accept, M accepts w
4. If w /∈ A ∩ B then M might loop forever but that’s

ok

17 / 30



Closure Properties of Turing Machines

For any language A, let

#(A) = {w = w1#w2# . . .#wn|wi ∈ A}

i.e. several strings in A each separated by a # sign

I Prove that decidable languages are closed
under #

I Prove that RE languages are closed under #

18 / 30



Closure Properties of Turing Machines

For any language A, let

#(A) = {w = w1#w2# . . .#wn|wi ∈ A}

i.e. several strings in A each separated by a # sign

I Prove that decidable languages are closed
under #

I Prove that RE languages are closed under #

18 / 30



Closure of Decidable Languages under #

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide #(A).
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA on each wi

4. If MA accepts each wi accept. Otherwise, reject

19 / 30



Closure of Decidable Languages under #

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide #(A).
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA on each wi

4. If MA accepts each wi accept. Otherwise, reject

19 / 30



Closure of Decidable Languages under #

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide #(A).
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA on each wi

4. If MA accepts each wi accept. Otherwise, reject

19 / 30



Closure of Decidable Languages under #

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide #(A).

I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA on each wi

4. If MA accepts each wi accept. Otherwise, reject

19 / 30



Closure of Decidable Languages under #

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide #(A).
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA on each wi

4. If MA accepts each wi accept. Otherwise, reject

19 / 30



Closure of Decidable Languages under #

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide #(A).
I M does the following:

1. M takes w as input

2. Check that w = w1#w2 . . .#wn (i.e. correct
format)

3. Run MA on each wi

4. If MA accepts each wi accept. Otherwise, reject

19 / 30



Closure of Decidable Languages under #

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide #(A).
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)

3. Run MA on each wi

4. If MA accepts each wi accept. Otherwise, reject

19 / 30



Closure of Decidable Languages under #

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide #(A).
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA on each wi

4. If MA accepts each wi accept. Otherwise, reject

19 / 30



Closure of Decidable Languages under #

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide #(A).
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA on each wi

4. If MA accepts each wi accept. Otherwise, reject

19 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .
5. If any wi /∈ A then M may loop forever, and that’s

ok

20 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .
5. If any wi /∈ A then M may loop forever, and that’s

ok

20 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .
5. If any wi /∈ A then M may loop forever, and that’s

ok

20 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)

I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .
5. If any wi /∈ A then M may loop forever, and that’s

ok

20 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .
5. If any wi /∈ A then M may loop forever, and that’s

ok

20 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)
I M does the following:

1. M takes w as input

2. Check that w = w1#w2 . . .#wn (i.e. correct
format)

3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .
5. If any wi /∈ A then M may loop forever, and that’s

ok

20 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)

3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .
5. If any wi /∈ A then M may loop forever, and that’s

ok

20 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .
5. If any wi /∈ A then M may loop forever, and that’s

ok

20 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .

5. If any wi /∈ A then M may loop forever, and that’s
ok

20 / 30



Closure of RE Languages under #

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize #(A)
I M does the following:

1. M takes w as input
2. Check that w = w1#w2 . . .#wn (i.e. correct

format)
3. Run MA in parallel on each wi

4. If MA accepts each wi , then M accepts w .
5. If any wi /∈ A then M may loop forever, and that’s

ok

20 / 30



Closure Properties of Turing Machines

Recall that for any language A, let

A∗ = {w = w1w2 . . .wn|wi ∈ A}

I Prove that decidable languages are closed
under Kleene star

I Prove that RE languages are closed under
Kleene star

21 / 30



Closure Properties of Turing Machines

Recall that for any language A, let

A∗ = {w = w1w2 . . .wn|wi ∈ A}

I Prove that decidable languages are closed
under Kleene star

I Prove that RE languages are closed under
Kleene star

21 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:
1. M takes w as input

2. Try all possible ways of splitting up
w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:
1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:
1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:
1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:
1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts

2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:
1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of Decidable Languages under
Kleene Star

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide A∗

I M does the following:
1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

22 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.

I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input

2. Try all possible ways of splitting up
w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts

2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

3. If all splits are rejected, then M rejects

Will this work?

23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE
I Let MA recognize A
I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn

2.1 For each way of splitting it up, run MA on each wi

2.2 If MA accepts each wi , then M accepts
2.3 Otherwise move on to the next way of splitting up w

MA may loop on some wi , and we don’t get to try
other splits

3. If all splits are rejected, then M rejects

Will this work?
23 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn in parallel

2.1 For each way of splitting it up, run MA on each wi

in parallel.

3. If MA accepts each wi for any split, then M accepts
4. If every way of splitting up w fails, M may loop,

but that’s ok

24 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn in parallel

2.1 For each way of splitting it up, run MA on each wi

in parallel.

3. If MA accepts each wi for any split, then M accepts
4. If every way of splitting up w fails, M may loop,

but that’s ok

24 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.

I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn in parallel

2.1 For each way of splitting it up, run MA on each wi

in parallel.

3. If MA accepts each wi for any split, then M accepts
4. If every way of splitting up w fails, M may loop,

but that’s ok

24 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn in parallel

2.1 For each way of splitting it up, run MA on each wi

in parallel.

3. If MA accepts each wi for any split, then M accepts
4. If every way of splitting up w fails, M may loop,

but that’s ok

24 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input

2. Try all possible ways of splitting up
w = w1w2 . . .wn in parallel

2.1 For each way of splitting it up, run MA on each wi

in parallel.

3. If MA accepts each wi for any split, then M accepts
4. If every way of splitting up w fails, M may loop,

but that’s ok

24 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn in parallel

2.1 For each way of splitting it up, run MA on each wi

in parallel.

3. If MA accepts each wi for any split, then M accepts
4. If every way of splitting up w fails, M may loop,

but that’s ok

24 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn in parallel
2.1 For each way of splitting it up, run MA on each wi

in parallel.

3. If MA accepts each wi for any split, then M accepts
4. If every way of splitting up w fails, M may loop,

but that’s ok

24 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn in parallel
2.1 For each way of splitting it up, run MA on each wi

in parallel.

3. If MA accepts each wi for any split, then M accepts

4. If every way of splitting up w fails, M may loop,
but that’s ok

24 / 30



Closure of RE Languages under Kleene
Star

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize A∗.
I M does the following:

1. M takes w as input
2. Try all possible ways of splitting up

w = w1w2 . . .wn in parallel
2.1 For each way of splitting it up, run MA on each wi

in parallel.

3. If MA accepts each wi for any split, then M accepts
4. If every way of splitting up w fails, M may loop,

but that’s ok

24 / 30



Closure Properties of Turing Machines

I Suppose A is RE

I Let MA recognize A
I Create a nondeterministic machine M to

recognize A∗ as follows:

1. M takes w as input
2. Nondeterministically guess how to split up

w = w1w2 . . .wn

3. Run MA on each wi in parallel
4. If MA accepts each wi (i.e. we guessed correctly)

then M accepts

I Every nondeterministic TM can be converted
to a deterministic TM

25 / 30



Closure Properties of Turing Machines

I Suppose A is RE

I Let MA recognize A

I Create a nondeterministic machine M to
recognize A∗ as follows:

1. M takes w as input
2. Nondeterministically guess how to split up

w = w1w2 . . .wn

3. Run MA on each wi in parallel
4. If MA accepts each wi (i.e. we guessed correctly)

then M accepts

I Every nondeterministic TM can be converted
to a deterministic TM

25 / 30



Closure Properties of Turing Machines

I Suppose A is RE

I Let MA recognize A
I Create a nondeterministic machine M to

recognize A∗ as follows:

1. M takes w as input
2. Nondeterministically guess how to split up

w = w1w2 . . .wn

3. Run MA on each wi in parallel
4. If MA accepts each wi (i.e. we guessed correctly)

then M accepts

I Every nondeterministic TM can be converted
to a deterministic TM

25 / 30



Closure Properties of Turing Machines

I Suppose A is RE

I Let MA recognize A
I Create a nondeterministic machine M to

recognize A∗ as follows:
1. M takes w as input

2. Nondeterministically guess how to split up
w = w1w2 . . .wn

3. Run MA on each wi in parallel
4. If MA accepts each wi (i.e. we guessed correctly)

then M accepts

I Every nondeterministic TM can be converted
to a deterministic TM

25 / 30



Closure Properties of Turing Machines

I Suppose A is RE

I Let MA recognize A
I Create a nondeterministic machine M to

recognize A∗ as follows:
1. M takes w as input
2. Nondeterministically guess how to split up

w = w1w2 . . .wn

3. Run MA on each wi in parallel
4. If MA accepts each wi (i.e. we guessed correctly)

then M accepts

I Every nondeterministic TM can be converted
to a deterministic TM

25 / 30



Closure Properties of Turing Machines

I Suppose A is RE

I Let MA recognize A
I Create a nondeterministic machine M to

recognize A∗ as follows:
1. M takes w as input
2. Nondeterministically guess how to split up

w = w1w2 . . .wn

3. Run MA on each wi in parallel

4. If MA accepts each wi (i.e. we guessed correctly)
then M accepts

I Every nondeterministic TM can be converted
to a deterministic TM

25 / 30



Closure Properties of Turing Machines

I Suppose A is RE

I Let MA recognize A
I Create a nondeterministic machine M to

recognize A∗ as follows:
1. M takes w as input
2. Nondeterministically guess how to split up

w = w1w2 . . .wn

3. Run MA on each wi in parallel
4. If MA accepts each wi (i.e. we guessed correctly)

then M accepts

I Every nondeterministic TM can be converted
to a deterministic TM

25 / 30



Closure Properties of Turing Machines

I Suppose A is RE

I Let MA recognize A
I Create a nondeterministic machine M to

recognize A∗ as follows:
1. M takes w as input
2. Nondeterministically guess how to split up

w = w1w2 . . .wn

3. Run MA on each wi in parallel
4. If MA accepts each wi (i.e. we guessed correctly)

then M accepts

I Every nondeterministic TM can be converted
to a deterministic TM

25 / 30



Closure Properties of Turing Machines

I Prove that decidable languages are closed
under complement

I Prove that RE languages are closed under
complement

26 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:
1. M takes w as input

2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:
1. M takes w as input
2. Run MA on w

3. If MA accepts, M rejects
4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:
1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects

4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:
1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:
1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of Decidable Languages under
Complement

I Suppose A is decidable

I Let MA decide A

I Create a machine M to decide Ac

I M does the following:
1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

I MA always halts, so M always halts

I M accepts w ⇔ MA rejects w ⇔ w /∈ A

27 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .

I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input

2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w

3. If MA accepts, M rejects
4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects

4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts

5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I Suppose A is RE

I Let MA recognize A

I Create a machine M to recognize Ac .
I M does the following:

1. M takes w as input
2. Run MA on w
3. If MA accepts, M rejects
4. If MA rejects, M accepts
5. If MA loops, then M loops

I M may not accept strings that are part of Ac

Will this work?

28 / 30



Closure of RE Languages under
Complement

I As it turns out, RE languages are NOT closed
under complement.

I We will study techniques to prove such
statements next week.

29 / 30



Closure of RE Languages under
Complement

I As it turns out, RE languages are NOT closed
under complement.

I We will study techniques to prove such
statements next week.

29 / 30



Closure Properties of Turing Machines

Recap

I Decidable languages are closed under union,
intersection, complement, Kleene star

I RE languages are closed under union,
intersection, Kleene star

I We need to be careful and run
machines/computation paths in parallel

I RE languages are not closed under complement

30 / 30



Closure Properties of Turing Machines

Recap

I Decidable languages are closed under union,
intersection, complement, Kleene star

I RE languages are closed under union,
intersection, Kleene star

I We need to be careful and run
machines/computation paths in parallel

I RE languages are not closed under complement

30 / 30



Closure Properties of Turing Machines

Recap

I Decidable languages are closed under union,
intersection, complement, Kleene star

I RE languages are closed under union,
intersection, Kleene star

I We need to be careful and run
machines/computation paths in parallel

I RE languages are not closed under complement

30 / 30



Closure Properties of Turing Machines

Recap

I Decidable languages are closed under union,
intersection, complement, Kleene star

I RE languages are closed under union,
intersection, Kleene star
I We need to be careful and run

machines/computation paths in parallel

I RE languages are not closed under complement

30 / 30



Closure Properties of Turing Machines

Recap

I Decidable languages are closed under union,
intersection, complement, Kleene star

I RE languages are closed under union,
intersection, Kleene star
I We need to be careful and run

machines/computation paths in parallel

I RE languages are not closed under complement

30 / 30


