Turing Machine Variants

Arjun Chandrasekhar

1/28

2 / 28

 Def: A model of computation is Turing complete if it is equivalent to the Turing machine model

- Def: A model of computation is Turing complete if it is equivalent to the Turing machine model
- We need to show that a language can be recognized by a Turing machine if and only if it can be recognized by a machine from the other model

- Def: A model of computation is Turing complete if it is equivalent to the Turing machine model
- We need to show that a language can be recognized by a Turing machine if and only if it can be recognized by a machine from the other model
- This involves two directions:

- Def: A model of computation is Turing complete if it is equivalent to the Turing machine model
- We need to show that a language can be recognized by a Turing machine if and only if it can be recognized by a machine from the other model
- This involves two directions:
 - 1. Show that <u>every</u> language that can be recognized by a Turing machine can be recognized by a machine from the other model

- Def: A model of computation is Turing complete if it is equivalent to the Turing machine model
- We need to show that a language can be recognized by a Turing machine if and only if it can be recognized by a machine from the other model
- This involves two directions:
 - 1. Show that <u>every</u> language that can be recognized by a Turing machine can be recognized by a machine from the other model
 - 2. Show that <u>every</u> language that can be recognized by a machine from the other model can be recognized a Turing machine

3 / 28

Def: A stationary Turing machine (stationary TM) is a like a normal Turing machine, but the machine has the option to stay in place after reading a character.

- Def: A stationary Turing machine (stationary TM) is a like a normal Turing machine, but the machine has the option to stay in place after reading a character.
- The transition function is $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$

 Let's prove that stationary Turing machines are equivalent to Turing machine.

- Let's prove that stationary Turing machines are equivalent to Turing machine.
 - That is, L can be recognized by a Turing machine if and only if L is recognized by a stationary TM

- Let's prove that stationary Turing machines are equivalent to Turing machine.
 - That is, L can be recognized by a Turing machine if and only if L is recognized by a stationary TM
- There are two directions to this proof

- Let's prove that stationary Turing machines are equivalent to Turing machine.
 - That is, L can be recognized by a Turing machine if and only if L is recognized by a stationary TM
- There are two directions to this proof
 - 1. If L is recognized by a normal TM, it can recognized by a stationary TM

- Let's prove that stationary Turing machines are equivalent to Turing machine.
 - That is, L can be recognized by a Turing machine if and only if L is recognized by a stationary TM
- There are two directions to this proof
 - 1. If *L* is recognized by a normal TM, it can recognized by a stationary TM
 - If L is recognized by a stationary TM, it can be recognized by a TM

 (\Rightarrow) If L is recognized by a normal TM, it can be recognized by a stationary TM

 (\Rightarrow) If L is recognized by a normal TM, it can be recognized by a stationary TM

Let *M* be the TM that recognizes *L*

 (\Rightarrow) If L is recognized by a normal TM, it can be recognized by a stationary TM

- Let *M* be the TM that recognizes *L*
- M is a stationary TM that simply chooses not to stay in place

 (\Rightarrow) If L is recognized by a normal TM, it can be recognized by a stationary TM

- Let M be the TM that recognizes L
- M is a stationary TM that simply chooses not to stay in place
- ▶ Thus, *L* can be recognized by a stationary TM

(\Leftarrow) If *L* is recognized by a stationary TM, it can be recognized by a normal TM

Let M be the stationary TM that recognizes L

- Let M be the stationary TM that recognizes L
- Technique: create a normal TM that simulates M

- ► Let *M* be the stationary TM that recognizes *L*
- **Technique:** create a normal TM that simulates *M*
- Create a machine M₂ behaves as M would, with one exception

- ► Let *M* be the stationary TM that recognizes *L*
- **Technique:** create a normal TM that simulates *M*
- Create a machine M₂ behaves as M would, with one exception
- If M is supposed to stay in place, M₂ will move left and then move right before proceeding

7 / 28

Def: A 2-hop Turing Machine is a like a normal Turing machine, but it can move up to 2 spaces left or right.

Def: A 2-hop Turing Machine is a like a normal Turing machine, but it can move up to 2 spaces left or right.

The transition function is

 $\delta: \boldsymbol{Q} \times \boldsymbol{\Gamma} \to \boldsymbol{Q} \times \boldsymbol{\Gamma} \times \{\boldsymbol{L}, \boldsymbol{R}, \boldsymbol{L}\boldsymbol{L}, \boldsymbol{R}\boldsymbol{R}\}$

- Def: A 2-hop Turing Machine is a like a normal Turing machine, but it can move up to 2 spaces left or right.
 - The transition function is
 - $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, LL, RR\}$
- Let's prove that 2-hop Turing machines equivalent to Turing machines.

Def: A 2-hop Turing Machine is a like a normal Turing machine, but it can move up to 2 spaces left or right.

The transition function is

- $\delta: \boldsymbol{Q} \times \boldsymbol{\Gamma} \to \boldsymbol{Q} \times \boldsymbol{\Gamma} \times \{\boldsymbol{L}, \boldsymbol{R}, \boldsymbol{L}\boldsymbol{L}, \boldsymbol{R}\boldsymbol{R}\}$
- Let's prove that 2-hop Turing machines equivalent to Turing machines.
 - What are the two directions?

7 / 28

(\Rightarrow) If *L* is recognized by a normal TM, it can be recognized by a 2-hop TM

 (\Rightarrow) If L is recognized by a normal TM, it can be recognized by a 2-hop TM

Let M be the TM that recognizes L

 (\Rightarrow) If L is recognized by a normal TM, it can be recognized by a 2-hop TM

- Let M be the TM that recognizes L
- M is a 2-hop TM that chooses to only move one square at a time.

(\Leftarrow) If *L* is recognized by a 2-hop TM, it can be recognized by a normal TM

9/28

(\Leftarrow) If *L* is recognized by a 2-hop TM, it can be recognized by a normal TM

▶ Let *M* be the 2-hop TM that recognizes *L*

- Let M be the 2-hop TM that recognizes L
- We will design a normal TM M_2 to simulate M

- Let M be the 2-hop TM that recognizes L
- We will design a normal TM M_2 to simulate M
- M₂ operates as M would. If M tries to hop two spaces right or left, M₂ will perform the two hops over two consecutive steps

10 / 28

Def: A 2-tape Turing machine is a TM with 2 different tapes

Def: A 2-tape Turing machine is a TM with 2 different tapes

Each tape has a separate tape head

10 / 28

Def: A 2-tape Turing machine is a TM with 2 different tapes

- Each tape has a separate tape head
- The two tape heads share a common state, but they move independently

10 / 28

Def: A 2-tape Turing machine is a TM with 2 different tapes

- Each tape has a separate tape head
- The two tape heads share a common state, but they move independently
- The transition function is

$$\delta: Q \times \mathsf{\Gamma}^2 \to Q \times \mathsf{\Gamma}^2 \times \{L, R\}^2$$

Def: A 2-tape Turing machine is a TM with 2 different tapes

- Each tape has a separate tape head
- The two tape heads share a common state, but they move independently

10

The transition function is

 $\delta: Q \times {\sf \Gamma}^2 \to Q \times {\sf \Gamma}^2 \times \{L,R\}^2$

 Let's prove that 2-tape Turing machines are equivalent to (1-tape) Turing machines

Def: A 2-tape Turing machine is a TM with 2 different tapes

- Each tape has a separate tape head
- The two tape heads share a common state, but they move independently
- The transition function is

 $\delta: Q \times {\sf \Gamma}^2 \to Q \times {\sf \Gamma}^2 \times \{L,R\}^2$

- Let's prove that 2-tape Turing machines are equivalent to (1-tape) Turing machines
 - What are the two directions?

$10 \, / \, 28$

(\Rightarrow) If *L* is recognized by a 1-tape TM, it can be recognized by a 2-tape TM

 $11 \, / \, 28$

(\Rightarrow) If L is recognized by a 1-tape TM, it can be recognized by a 2-tape TM

Let M be the 1-tape TM that recognizes L

11

 (\Rightarrow) If *L* is recognized by a 1-tape TM, it can be recognized by a 2-tape TM

- Let M be the 1-tape TM that recognizes L
- M is a 2-tape TM that ignores the second tape

(\Leftarrow) If *L* is recognized by a 2-tape TM, it can be recognized by a 1-tape TM

Let M be the 2-tape TM that recognizes L

(\Leftarrow) If *L* is recognized by a 2-tape TM, it can be recognized by a 1-tape TM

- Let M be the 2-tape TM that recognizes L
- We will design a 1-tape TM called M₂ to recognize L

(\Leftarrow) If *L* is recognized by a 2-tape TM, it can be recognized by a 1-tape TM

- Let M be the 2-tape TM that recognizes L
- We will design a 1-tape TM called M₂ to recognize L
- *M*₂ will use its single tape to keep track of both of M's tapes.

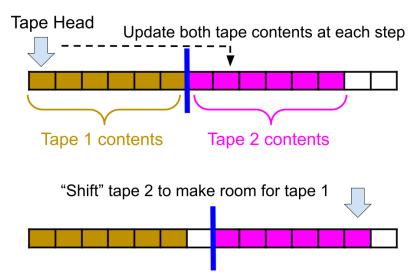
(\Leftarrow) If *L* is recognized by a 2-tape TM, it can be recognized by a 1-tape TM

- Let M be the 2-tape TM that recognizes L
- We will design a 1-tape TM called M₂ to recognize L
- *M*₂ will use its single tape to keep track of both of M's tapes.
- At every step, M₂ simulates both tape heads of M

(\Leftarrow) If *L* is recognized by a 2-tape TM, it can be recognized by a 1-tape TM

- Let M be the 2-tape TM that recognizes L
- We will design a 1-tape TM called M₂ to recognize L
- *M*₂ will use its single tape to keep track of both of M's tapes.
- At every step, M₂ simulates both tape heads of M
- If needed, M₂ can always push the second tape farther downstream to make more room for the first tape

 $12 \, / \, 28$



12 / 28

$13 \, / \, 28$

Def: A non-deterministic Turing machine is a normal TM, but it can make several different choices at each step

13

- Def: A non-deterministic Turing machine is a normal TM, but it can make several different choices at each step
 - The transition function is $\delta: Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$

- Def: A non-deterministic Turing machine is a normal TM, but it can make several different choices at each step
 - The transition function is $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$
 - There are many possible computation paths for the same string

- Def: A non-deterministic Turing machine is a normal TM, but it can make several different choices at each step
 - The transition function is $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$
 - There are many possible computation paths for the same string
 - The machine accepts if at least one computation path accepts

- Def: A non-deterministic Turing machine is a normal TM, but it can make several different choices at each step
 - The transition function is $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$
 - There are many possible computation paths for the same string
 - The machine accepts if at least one computation path accepts
- Let's show non-deterministic TMs are equivalent to deterministic TMs

- Def: A non-deterministic Turing machine is a normal TM, but it can make several different choices at each step
 - The transition function is $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$
 - There are many possible computation paths for the same string
 - The machine accepts if at least one computation path accepts
- Let's show non-deterministic TMs are equivalent to deterministic TMs
 - What are the two directions?

- Def: A non-deterministic Turing machine is a normal TM, but it can make several different choices at each step
 - The transition function is $\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$
 - There are many possible computation paths for the same string
 - The machine accepts if at least one computation path accepts
- Let's show non-deterministic TMs are equivalent to deterministic TMs
 - What are the two directions?
 - Keep in mind that some computation paths may not halt

 $13 \, / \, 28$

 (\Rightarrow) If L is recognized by a deterministic TM, it can be recognized by a non-deterministic TM

 (\Rightarrow) If L is recognized by a deterministic TM, it can be recognized by a non-deterministic TM

Let M be the machine that recognizes L

 (\Rightarrow) If L is recognized by a deterministic TM, it can be recognized by a non-deterministic TM

- Let M be the machine that recognizes L
- M is a non-deterministic TM that only has one computation path

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

15

Let *M* be the non-deterministic TM that recognizes *L*

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

15

- Let *M* be the non-deterministic TM that recognizes *L*
- Design a deterministic TM called M₂ to simulate M

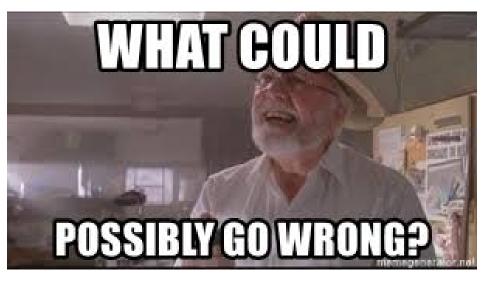
(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

- Let *M* be the non-deterministic TM that recognizes *L*
- Design a deterministic TM called M₂ to simulate M
- We run *M*, and try all possible computation paths.

15

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

- Let *M* be the non-deterministic TM that recognizes *L*
- Design a deterministic TM called M₂ to simulate M
- We run *M*, and try all possible computation paths.
- If any computation path accepts, M₂ accepts, otherwise it rejects



15 / 28

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

- Let *M* be the non-deterministic TM that recognizes *L*
- Design a deterministic TM called M₂ to simulate M
- We run *M*, and try all possible computation paths.

We might get stuck on a path that loops forever!

 If any computation path accepts, M₂ accepts, otherwise it rejects

 $15 \, / \, 28$

CHECK YOURSELF YOU MUST

BEFORE WRECK YOURSELF YOU DO

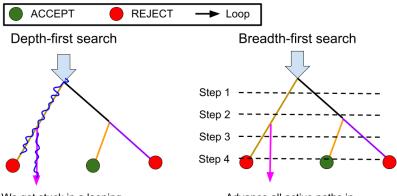
15/28

Keep track of all the current computation paths

- Keep track of all the current computation paths
- Run each current path for one step (rather than running any one path to completion)

- Keep track of all the current computation paths
- Run each current path for one step (rather than running any one path to completion)
- "breadth-first search"

Breadth-first search



We get stuck in a looping computation before we get to try the accepting ones! Advance all active paths in parallel, one step at a time; never get stuck going down one path

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

18

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

Let *M* be the non-deterministic TM that recognizes *L*

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

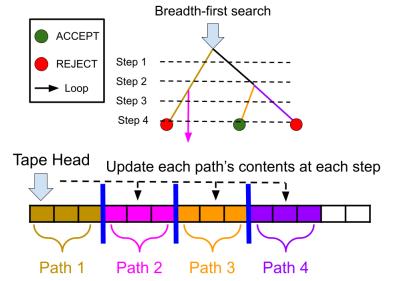
- Let *M* be the non-deterministic TM that recognizes *L*
- Design a deterministic TM called M₂ to simulate M

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

- Let *M* be the non-deterministic TM that recognizes *L*
- Design a deterministic TM called M₂ to simulate M
- *M*₂ tries out all possible computation paths of *M* in parallel

(\Leftarrow) If *L* is recognized by a non-deterministic TM, it can be recognized by a deterministic TM

- Let *M* be the non-deterministic TM that recognizes *L*
- Design a deterministic TM called M₂ to simulate M
- *M*₂ tries out all possible computation paths of *M* in parallel
- If any computation path accepts ever, M₂ accepts, otherwise it rejects



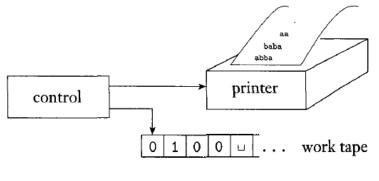
Def: An **enumerator** is a Turing machine with an attached printer

- **Def:** An **enumerator** is a Turing machine with an attached printer
 - At any point in time the TM may ask the printer to print a string

Enumerator

Def: An **enumerator** is a Turing machine with an attached printer

At any point in time the TM may ask the printer to print a string



$21 \, / \, 28$

Let L be a language, and let E be an enumerator

 $21 \, / \, 28$

- Let L be a language, and let E be an enumerator
- We say E enumerates L if E prints out every string in L

- Let L be a language, and let E be an enumerator
- We say E enumerates L if E prints out every string in L
- If we give the enumerator infinite time, it will eventually print out every string in the language

- Let L be a language, and let E be an enumerator
- We say E enumerates L if E prints out every string in L
- If we give the enumerator infinite time, it will eventually print out every string in the language
- Def: If L can be enumerated, we say L is recursively enumerable (RE)

$$L = \{p | p \in \mathbb{N}, p \text{ is prime}\}$$

$$L = \{p | p \in \mathbb{N}, p \text{ is prime}\}$$

1. For
$$i = 0, 1, 2, \ldots$$

$$L = \{p | p \in \mathbb{N}, p \text{ is prime}\}$$

1. For
$$i = 0, 1, 2, ...$$

1.1 Check if *i* is prime

$$L = \{p | p \in \mathbb{N}, p \text{ is prime}\}$$

1. For
$$i = 0, 1, 2, ...$$

1.1 Check if *i* is prime
1.2 If *i* is prime, print it out

Theorem: A language *L* is Turing-recognizable if and only if *L* is recursively enumerable.

Theorem: A language *L* is Turing-recognizable if and only if *L* is recursively enumerable.

There are two directions:

Theorem: A language *L* is Turing-recognizable if and only if *L* is recursively enumerable.

There are two directions:

1. If L is Turing-recognizable, there is an enumerator E that enumerates L

Theorem: A language *L* is Turing-recognizable if and only if *L* is recursively enumerable.

There are two directions:

- 1. If L is Turing-recognizable, there is an enumerator E that enumerates L
- 2. If L is RE, then some machine M can recognize L

 (\Rightarrow) If *L* is recursively enumerable, *L* is Turing-recognizable

▶ We know some machine *E* enumerates *L*

- ▶ We know some machine *E* enumerates *L*
- Design a machine M to recognize L

- ▶ We know some machine *E* enumerates *L*
- Design a machine M to recognize L
- On input *w*, do the following:

- ▶ We know some machine *E* enumerates *L*
- Design a machine M to recognize L
- On input *w*, do the following:
 - 1. Run E to enumerate L

- ▶ We know some machine *E* enumerates *L*
- Design a machine M to recognize L
- On input *w*, do the following:
 - 1. Run E to enumerate L
 - 2. If E ever prints out w, then $w \in L$ so immediately accept

- ▶ We know some machine *E* enumerates *L*
- Design a machine M to recognize L
- On input *w*, do the following:
 - 1. Run E to enumerate L
 - 2. If *E* ever prints out *w*, then $w \in L$ so immediately accept
 - 3. If *E* never prints out *w*, then $w \notin L$ and *M* will run forever (which is OK)

 (\Leftarrow) If *L* is Turing-recognizable, then *L* is recursively enumerable

 (\Leftarrow) If *L* is Turing-recognizable, then *L* is recursively enumerable

▶ We know some machine *M* recognizes *L*

 (\Leftarrow) If *L* is Turing-recognizable, then *L* is recursively enumerable

► We know some machine *M* recognizes *L*

• If $w \in L$, *M* accepts *w*

- ► We know some machine *M* recognizes *L*
 - If $w \in L$, M accepts w
 - If $w \notin L$ then *M* rejects or loops

- ▶ We know some machine *M* recognizes *L*
 - If $w \in L$, *M* accepts *w*
 - If $w \notin L$ then *M* rejects or loops
- We design a machine E to enumerate L

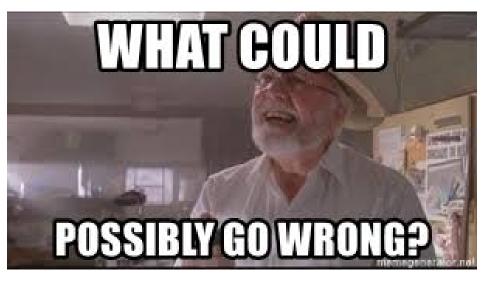
- ▶ We know some machine *M* recognizes *L*
 - If $w \in L$, *M* accepts *w*
 - If $w \notin L$ then *M* rejects or loops
- We design a machine E to enumerate L
 - 1. Go through all $w \in \Sigma^*$ one at a time and run M on each w

 (\Leftarrow) If *L* is Turing-recognizable, then *L* is recursively enumerable

- ▶ We know some machine *M* recognizes *L*
 - If $w \in L$, *M* accepts *w*
 - If $w \notin L$ then *M* rejects or loops
- ▶ We design a machine *E* to enumerate *L*
 - 1. Go through all $w \in \Sigma^*$ one at a time and run M on each w
 - 2. If M accepts w, print out w.

 (\Leftarrow) If *L* is Turing-recognizable, then *L* is recursively enumerable

- ▶ We know some machine *M* recognizes *L*
 - If $w \in L$, *M* accepts *w*
 - If $w \notin L$ then *M* rejects or loops
- ▶ We design a machine *E* to enumerate *L*
 - 1. Go through all $w \in \Sigma^*$ one at a time and run M on each w
 - 2. If M accepts w, print out w.
 - 3. After processing w, move on the the next string



 (\Leftarrow) If *L* is Turing-recognizable, then *L* is recursively enumerable

- We know some machine M recognizes L
 - If $w \in L$, M accepts w
 - If $w \notin L$ then *M* rejects or loops
- We design a machine E to enumerate L
 - 1. Go through all $w \in \Sigma^*$ one at a time and run M on each w
 - 2. If *M* accepts *w*, print out *w*. This may run forever!
 - 3. After processing w, move on the the next string

Technique: Run a machine *M* in parallel on all possible strings through dovetailing.

Technique: Run a machine *M* in parallel on all possible strings through dovetailing.

• Let
$$w_1, w_2, \dots \in \Sigma^*$$

Technique: Run a machine *M* in parallel on all possible strings through dovetailing.

Let w₁, w₂, · · · ∈ Σ*
 Let S(i, j) represent step i in M's computation on string w_j

Technique: Run a machine *M* in parallel on all possible strings through dovetailing.

Let w₁, w₂, ··· ∈ Σ*
Let S(i, j) represent step i in M's computation on string w_j
1. Run S(1, 1)

Technique: Run a machine *M* in parallel on all possible strings through dovetailing.

- Let w₁, w₂, · · · ∈ Σ*
 Let S(i, j) represent step i in M's computation on string w_j
 - 1. Run S(1,1)
 - 2. Run S(1,2), S(2,1)

Technique: Run a machine *M* in parallel on all possible strings through dovetailing.

- Let w₁, w₂, · · · ∈ Σ*
 Let S(i, j) represent step i in M's computation on string w_j
 - 1. Run S(1,1)
 - 2. Run S(1,2), S(2,1)
 - 3. Run S(1,3), S(2,2), S(3,1)

$$26 \, / \, 28$$

Technique: Run a machine *M* in parallel on all possible strings through dovetailing.

Let w₁, w₂, · · · ∈ Σ*
 Let S(i, j) represent step i in M's computation on string w_j

 Run S(1, 1)
 Run S(1, 2), S(2, 1)
 Run S(1, 3), S(2, 2), S(3, 1)
 Run S(1, 4), S(2, 3), S(3, 2), S(4, 1)

Technique: Run a machine *M* in parallel on all possible strings through dovetailing.

----> New "round" of computation steps

Input String	Step 1	Step 2	Step 3	Step 4	
w ₁					
w ₂					
w ₃					
w ₄					

- ▶ We know some machine *M* recognizes *L*
 - If $w \in L$, *M* accepts *w*
 - If $w \notin L$ then *M* rejects or loops
- We design a machine E to enumerate L

- ▶ We know some machine *M* recognizes *L*
 - If $w \in L$, *M* accepts *w*
 - If $w \notin L$ then *M* rejects or loops
- We design a machine E to enumerate L
 - 1. Run *M* in parallel on all strings $w \in \Sigma^*$ (dovetailing)

 (\Leftarrow) If *L* is Turing-recognizable, then *L* is recursively enumerable

- ▶ We know some machine *M* recognizes *L*
 - If $w \in L$, *M* accepts *w*
 - If $w \notin L$ then *M* rejects or loops
- ▶ We design a machine *E* to enumerate *L*
 - 1. Run M in parallel on all strings $w \in \Sigma^*$ (dovetailing)
 - 2. Whenever *M* accepts a string *w*, print out *w* (but keep running the other strings)