Theory of Computation
Undecidable Languages

Arjun Chandrasekhar

1/41



Undecidability Proofs

We want to show that language B is undecidable

2 /41



Undecidability Proofs

We want to show that language B is undecidable

Technique: Use reducibility to prove that a
language is decidable

2 /41



Undecidability Proofs

We want to show that language B is undecidable

Technique: Use reducibility to prove that a
language is decidable

1. AFSOC B is decidable

2 /41



Undecidability Proofs

We want to show that language B is undecidable

Technique: Use reducibility to prove that a
language is decidable

1. AFSOC B is decidable

2. Show that A<+ B
“If we can decide B we can also decide A"

2 /41



Undecidability Proofs

We want to show that language B is undecidable

Technique: Use reducibility to prove that a
language is decidable

1. AFSOC B is decidable

2. Show that A<+ B
“If we can decide B we can also decide A"

3. But A is known to be undecidable

2 /41



Undecidability Proofs

We want to show that language B is undecidable

Technique: Use reducibility to prove that a
language is decidable

1. AFSOC B is decidable

2. Show that A<+ B
“If we can decide B we can also decide A"

3. But A is known to be undecidable
» This is a contradiction!

2 /41



Undecidability Proofs

We want to show that language B is undecidable

Technique: Use reducibility to prove that a
language is decidable

1. AFSOC B is decidable

2. Show that A<+ B
“If we can decide B we can also decide A"

3. But A is known to be undecidable
» This is a contradiction!

4. We conclude that B was never decidable in the
first place

2 /41



The language Emy

Consider the following language

Erv = {(M)|M is a Turing Machine, L(M) = 0}

3/41



The language Emy

Consider the following language

Erv = {(M)|M is a Turing Machine, L(M) = 0}

» We receive a TM description (M) as input

3/41



The language Emy

Consider the following language

Erv = {(M)|M is a Turing Machine, L(M) = 0}

» We receive a TM description (M) as input

» We want to determine whether M is capable of
accepting any strings or not

3/41



The language Emy

Consider the following language

Erv = {(M)|M is a Turing Machine, L(M) = 0}

» We receive a TM description (M) as input

» We want to determine whether M is capable of
accepting any strings or not

» We accept (M) if M rejects or loops on every
string; otherwise we reject (M)

3/41



Ery is undecidable

Let's prove that Ery is undecidable

Erm = {{M)|M is a Turing Machine, L(M) = 0}

4 /41



Ery is undecidable

Let's prove that Ery is undecidable
Ery = {(M)|M is a Turing Machine, L(M) = ()}

» Hint 1: Reduce from Aty

» Hint 2: Your solution will involve constructing
a machine P at runtime

4/41



Ery is undecidable (approach 1)
Let's prove that E1y; is undecidable
Erv = {(M)|M is a Turing Machine, L(M) = ()}

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

5 /41



Ery is undecidable (approach 1)
Let's prove that E1y; is undecidable
Erv = {(M)|M is a Turing Machine, L(M) = ()}

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input

5 /41



Ery is undecidable (approach 1)
Let's prove that E1y; is undecidable
Erv = {(M)|M is a Turing Machine, L(M) = ()}

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

5 /41



Ery is undecidable (approach 1)

Let's prove that E1y; is undecidable

Erym = {(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input

0}

5 /41



Ery is undecidable (approach 1)

Let's prove that E1y; is undecidable

Erym = {(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 If s=w, run Mons
If s # w, reject
M and w are hard-coded constants

0}

5 /41



Ery is undecidable (approach 1)

Let's prove that E1y is undecidable

Ernm = {{M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

2.1 P receives s as input
22 Ifs=w, run Mon s
If s # w, reject
M and w are hard-coded constants

What is L(P)?

0}

5 /41



Ery is undecidable (approach 1)

Let's prove that Ery is undecidable

Erym = {{(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 If s=w, run Mon s
If s # w, reject
M and w are hard-coded constants
What is L(P)?
If M accepts w then L(P) = {w}

0}

5 /41



Ery is undecidable (approach 1)

Let's prove that Ery is undecidable

Ery = {(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 If s=w, run Mon s
If s # w, reject
M and w are hard-coded constants
What is L(P)?
If M accepts w then L(P) = {w}
If M doesn't accept w then L(P) =)

0}

5 /41



Ery is undecidable (approach 1)

Let's prove that Ery is undecidable

Ery = {(M)|M is a Turing Machine, L(M) = ()}

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 If s=w, run Mon s
If s # w, reject
M and w are hard-coded constants
What is L(P)?
If M accepts w then L(P) = {w}
If M doesn't accept w then L(P) =)
<P> € Ery & <M, W> §é ATM

5 /41



Ery is undecidable (approach 1)

Let's prove that Ery is undecidable

Erym = {(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 Ifs=w, run Mon s
If s # w, reject
M and w are hard-coded constants

3. Use Mk to check if (P) € Eqy

0}

5 /41



Ery is undecidable (approach 1)

Let's prove that Ery is undecidable

Erym = {(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 Ifs=w, run Mon s
If s # w, reject
M and w are hard-coded constants
3. Use Mg to check if (P) € Eqy
3.1 If Mg accepts (P), D rejects (M, w)

0}

5 /41



Ery is undecidable (approach 1)

Let's prove that Ery is undecidable

Erym = {(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 Ifs=w, run Mon s
If s # w, reject
M and w are hard-coded constants
3. Use Mg to check if (P) € Eqy
3.1 If Mg accepts (P), D rejects (M, w)
3.2 If Mg rejects (P), D accepts (M, w)

0}

5 /41



Ery is undecidable (approach 1)

() Accept Create machine P:
Reject if input # w, otherwise simulate M
() Reject/loop Input:(M. w) @
> |
() Simulate M W
| 20 T
Case 1: M accepts w Case 2: M doesn’t accept w
Then L(P) # @ Then L(P) = @
Iw Iw

If we can check if L(P) = &, we can infer whether M accepts w

6 /41



E1y is undecidable (approach 1)

AL = {<M, w> | M accepts w}
E., = {<M>]|L(M) =2}

<M, w>

Create machine P:

1.
2.
3.

Take input s
If s # w, reject
Ifs=w, run M
onw

D

Me

v

—>

Use ME to
check if
L(P)=2

A
no
yes

ccept

Reject

If we can decide E

™’

we can decide ATM

7/41




Ery is undecidable (approach 2)
Let's prove that E1y; is undecidable
Erv = {(M)|M is a Turing Machine, L(M) = ()}

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

8 /41



Ery is undecidable (approach 2)

Let's prove that E1y; is undecidable
Eryn = {(M)|M is a Turing Machine, L(M) = (}}

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input

8 /41



Ery is undecidable (approach 2)

Let's prove that E1y; is undecidable
Eryn = {(M)|M is a Turing Machine, L(M) = (}}

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

8 /41



Ery is undecidable (approach 2)

Let's prove that E1y; is undecidable

Etym = {{(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input

0}

8 /41



Ery is undecidable (approach 2)

Let's prove that E1y; is undecidable

Etym = {{(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

0}

8 /41



Ery is undecidable (approach 2)

Let's prove that E1y; is undecidable

Erym = {{(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

What is L(P)?

0}

8 /41



Ery is undecidable (approach 2)

Let's prove that E1y is undecidable

Erm = {{M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

2.1 P receives s as input
2.2 Ignore s, run M on w
M and w are hard-coded constants

What is L(P)?
If M accepts w then L(P) = X*

0}

8 /41



Ery is undecidable (approach 2)

Let's prove that Ery is undecidable

Erym = {(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides Ery. We will
construct a machine D to decide Ay
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input

2.2 lgnore s, run M on w
M and w are hard-coded constants

What is L(P)?
If M accepts w then L(P) =X%*
If M doesn’t accept w then L(P) = ()

0}

8 /41



Ery is undecidable (approach 2)

Let's prove that Ery is undecidable

Ery = {(M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

What is L(P)?

If M accepts w then L(P) =X%*

If M doesn’t accept w then L(P) =)
<P> e Erny & <M, W> ¢ Arm

0}

8 /41



Ery is undecidable (approach 2)

Let's prove that Ery is undecidable

Etm = {{M)|M is a Turing Machine, L(M) =

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input

2. Create a new machine P

2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

3. Use Mg to check if (P) € Eqy

0}

8 /41



Ery is undecidable (approach 2)

Let's prove that E1) is undecidable
Ery = {(M)|M is a Turing Machine, L(M) = ()}

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input

2. Create a new machine P

2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

3. Use Mg to check if (P) € Eqy
3.1 If Mg accepts (P), D rejects (M, w)

8 /41



Ery is undecidable (approach 2)

Let's prove that E1) is undecidable
Ery = {(M)|M is a Turing Machine, L(M) = ()}

AFSOC machine Mg decides E1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input

2. Create a new machine P

2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

3. Use Mg to check if (P) € Eqy
3.1 If Mg accepts (P), D rejects (M, w)
3.2 If Mg rejects (P), D accepts (M, w)

8 /41



Ery is undecidable (approach 2)

() Accept Create machine P:
Ignore input, simulate M on w
() Reject/loop Input:(M, w)
() Simulate M on w >
r )
Case 1: M accepts w Case 2: M doesn’t accept w
Then L(P)# @ Then L(P) =@

If we can check if L(P) = &, we can infer whether M accepts w

9/41



E1y is undecidable (approach 2)

AL = {<M, w> | M accepts w}
E., = {<M>]|L(M) =2}

D
Mg
Accept
_ | no
<M, w> ?re_?ti m_achltne = Use M_ to Ves
—» |- la@xeinputs —» check if Reject
2. lIgnore s, run M _
onw L(P)=2

If we can decide E_, ,, we can decide ATM

™’

10/ 41



The language ALL7y

Consider the following language
ALL1y = {{M)|L(M) =X}

We receive a TM description as input, and want to
figure out if that TM accepts everything

11/ 41



ALLmy is undecidable

Let's prove that ALLry; is undecidable

ALL7y = {{M)|M is a Turing Machine, L(M) = X"}

12 /41



ALLmy is undecidable

Let's prove that ALLry; is undecidable
ALL7y = {{M)|M is a Turing Machine, L(M) = X"}

» Hint 1: Reduce from Aty

» Hint 2: Your solution will involve constructing
a machine P at runtime

12 /41



ALLry is undecidable (approach 1)

Let's prove that ALLTy is undecidable

ALLpy = {(M)|M is a Turing Machine, L(M) = L*}

13 /41



ALLry; is undecidable (approach 1)
Let's prove that ALLTy is undecidable
ALLryv = {(M)|M is a Turing Machine, L(M) = X"}

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input

13 /41



ALLry; is undecidable (approach 1)
Let's prove that ALLTy is undecidable
ALLryv = {(M)|M is a Turing Machine, L(M) = X"}

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

13 /41



ALLry; is undecidable (approach 1)

Let's prove that ALLTy is undecidable
ALLryv = {(M)|M is a Turing Machine, L(M) = X"}

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input

13 /41



ALLry; is undecidable (approach 1)

Let's prove that ALLTy is undecidable
ALLryv = {(M)|M is a Turing Machine, L(M) = X"}

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input

2. Create a new machine P

2.1 P receives s as input
22 If s=w, run Mon s
If s # w, accept
M and w are hard-coded constants

13 /41



ALLry is undecidable (approach 1)

Let's prove that ALLty is undecidable
ALLyy = {(M)|M is a Turing Machine, L(M)

AFSOC machine M, decides ALLty. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

2.1 P receives s as input
22 Ifs=w, run Mons
If s # w, accept
M and w are hard-coded constants

What is L(P)?

=1"}

13 /41



ALLry is undecidable (approach 1)

Let's prove that ALLry is undecidable
ALLpyv = {(M)|M is a Turing Machine, L(M) = L*}

AFSOC machine M, decides ALLty. We will
construct a machine D to decide Aty
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 If s=w, run Mon s
If s # w, accept
M and w are hard-coded constants

What is L(P)?
If M accepts w then L(P) =X%*
13/41



ALLry is undecidable (approach 1)

Let's prove that ALLry is undecidable
ALLyy = {{M)|M is a Turing Machine, L(M) = X"}

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide A1y
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 If s=w, run Mon s
If s # w, accept
M and w are hard-coded constants
What is L(P)?
If M accepts w then L(P) =X%*
If M doesn’t accept w then L(P) = X*\{w}

13 /41



ALLry is undecidable (approach 1)

Let's prove that ALLry is undecidable
ALLyy = {{M)|M is a Turing Machine, L(M) = X"}

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide A1y
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 If s=w, run Mon s
If s # w, accept
M and w are hard-coded constants

What is L(P)?

If M accepts w then L(P) =X%*

If M doesn’t accept w then L(P) = X*\{w}

<P> c ALLty & <M, W> € Arm 13 / 41



ALLry; is undecidable (approach 1)

Let's prove that ALLry is undecidable
ALLry = {(M)|M is a Turing Machine, L(M)

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 Ifs=w, run Mon s
If s # w, accept
M and w are hard-coded constants

3. Use My to check if (P) € ALLyy

=¥}

13 /41



ALLry; is undecidable (approach 1)

Let's prove that ALLry is undecidable
ALLry = {(M)|M is a Turing Machine, L(M)

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 Ifs=w, run Mon s
If s # w, accept
M and w are hard-coded constants
3. Use My to check if (P) € ALLyy
3.1 If Ma accepts (P), D accepts (M, w)

=¥}

13 /41



ALLry; is undecidable (approach 1)

Let's prove that ALLry is undecidable
ALLry = {(M)|M is a Turing Machine, L(M)

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
22 Ifs=w, run Mon s
If s # w, accept
M and w are hard-coded constants
3. Use My to check if (P) € ALLyy
3.1 If Ma accepts (P), D accepts (M, w)
3.2 If Mg rejects (P), D rejects (M, w)

=¥}

13 /41



ALLry; is undecidable (approach 1)

() Accept Create machine P:
Accept if input # w, otherwise simulate M
() Reject/loop Input:(M. w) @
> |
() Simulate M W
r )
Case1: M accepss w Case 2: M doesn’t accept w
Then L(P) = X Then L(P) # =
Iw Iw

If we can check if L(P) = £', we can infer whether M accepts w

14 /41



ALLTy is undecidable (approach 1)

A ={<M,w>|M accepts* w}
ALL_, ={<M>|L(M)=1X}

D
M Reject
Create machine P: v e
<M, w>||1. Take inputs Use M, to ves
—» 2. Ifs#w,accept — checkif Accept
3. Ifs=w,runM L(P)=%
onw

If we can decide ALLTM, we can decide ATM

15/ 41




ALLry is undecidable (approach 2)

Let's prove that ALLty\ is undecidable

ALLry = {(M)|M is a Turing Machine, L(M) = L*}

16 / 41



ALLry is undecidable (approach 2)

Let's prove that ALLty\ is undecidable
ALLry = {(M)|M is a Turing Machine, L(M) = L*}

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide A1y

1. D receives (M, w) as input

16 / 41



ALLry is undecidable (approach 2)

Let's prove that ALLty\ is undecidable
ALLry = {(M)|M is a Turing Machine, L(M) = L*}

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide A1y

1. D receives (M, w) as input
2. Create a new machine P

16 / 41



ALLry is undecidable (approach 2)

Let's prove that ALLty\ is undecidable
ALLry = {(M)|M is a Turing Machine, L(M) = L*}

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide A1y

1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input

16 / 41



ALLry is undecidable (approach 2)

Let's prove that ALLty\ is undecidable
ALLry = {(M)|M is a Turing Machine, L(M) = L*}

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide A1y

1. D receives (M, w) as input

2. Create a new machine P

2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

16 / 41



ALLry is undecidable (approach 2)

Let's prove that ALLty is undecidable
ALLryv = {(M)|M is a Turing Machine, L(M) = L*}

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input

2. Create a new machine P

2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

What is L(P)?
16 /41



ALLry is undecidable (approach 2)

Let's prove that ALLty is undecidable
ALLry = {(M)|M is a Turing Machine, L(M) = X"}

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input

2. Create a new machine P

2.1 P receives s as input
2.2 Ignore s, run M on w
M and w are hard-coded constants

What is L(P)?
If M accepts w then L(P) = X*

16 / 41



ALLry is undecidable (approach 2)

Let's prove that ALLry is undecidable
ALL1y = {{M)|M is a Turing Machine, L(M) = X"}

AFSOC machine M, decides ALL1y. We will
construct a machine D to decide Ay
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input

2.2 lgnore s, run M on w
M and w are hard-coded constants

What is L(P)?
If M accepts w then L(P) =X%*
If M doesn’t accept w then L(P) = ()

16 / 41



ALLry is undecidable (approach 2)

Let's prove that ALLry is undecidable
ALLyy = {{M)|M is a Turing Machine, L(M) = X"}

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide A1y
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

What is L(P)?
If M accepts w then L(P) =X%*
If M doesn’t accept w then L(P) =)
<P> € ALLty & <M, W> € Ay
16 /41



ALLry is undecidable (approach 2)

Let's prove that ALLry is undecidable
ALLpyv = {(M)|M is a Turing Machine, L(M)

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide Ay
1. D receives (M, w) as input
2. Create a new machine P
2.1 P receives s as input

2.2 lgnore s, run M on w
M and w are hard-coded constants

3. Use My to check if (P) € ALLqy

=¥}

16 / 41



ALLry is undecidable (approach 2)

Let's prove that ALLry is undecidable
ALLpyv = {(M)|M is a Turing Machine, L(M)

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

3. Use My to check if (P) € ALLqy
3.1 If M4 accepts (P), D accepts (M, w)

=¥}

16 / 41



ALLry is undecidable (approach 2)

Let's prove that ALLry is undecidable
ALLpyv = {(M)|M is a Turing Machine, L(M)

AFSOC machine M4 decides ALL1y. We will
construct a machine D to decide Ay

1. D receives (M, w) as input
2. Create a new machine P

2.1 P receives s as input
2.2 lgnore s, run M on w
M and w are hard-coded constants

3. Use My to check if (P) € ALLqy
3.1 If M4 accepts (P), D accepts (M, w)
3.2 If M4 rejects (P), D rejects (M, w)

=¥}

16 / 41



ALLry is undecidable (approach 2)

() Accept Create machine P:
Ignore input, simulate M on w

() Reject/loop

Input:{M, w)
() Simulate M on w >
r )
Case 1: M accepts w Case 2: M doesn’t accept w
Then L(P) = Z* Then L(P) # Z*

If we can check if L(P) = £', we can infer whether M accepts w

17 /41



ALLTy is undecidable (approach 2)

A ={<M,w>|M accepts* w}
ALL_, ={<M>|L(M)=1X}

D
M
A Reject
_ | no
<M, w> ?re_?ti m_achltne = Use M, to Ves
—» |- la@xeinputs —» check if Accept
2. lIgnore s, run M o
on w L(P)=%

If we can decide ALLTM, we can decide ATM

18 /41




The language EQmw

EQrm = {(M1, Mp)|L(My) = L(M2)}

We receive two Turing machine descriptions, and we
want to determine out if the two machines are
equivalent

19 /41



The language EQmw

EQrm = {(M1, Mp)|L(My) = L(M2)}

We receive two Turing machine descriptions, and we
want to determine out if the two machines are
equivalent

» Can we write a script to check that your
programming assignment submissions are
equivalent to my solution code?

19 /41



The language EQmw

EQrm = {(M1, Mp)|L(My) = L(M2)}

We receive two Turing machine descriptions, and we
want to determine out if the two machines are
equivalent

» Can we write a script to check that your
programming assignment submissions are
equivalent to my solution code?

» ‘“equivalent” as in “the EXACT same output on
ALL (possible) test cases”

19 /41



EQrnm is undecidable

Let's prove that EQry is undecidable
EQru = {(My, M2)|L(My) = L(M)}
We will reduce from each of the following languages

Ay = {(M, w)|lw € L(M)}
Ery = {{M)|L(M) =

0
ALLty = {{M)[L(M) = L7}

20 /41



EQr is undecidable (approach 1)
Let's prove that EQry is undecidable

EQry = {{M1, Mo)|L(My) = L(M2)}

Reduce from Ary;: AFSOC machine Mgg decides
EQry. We will construct a machine D to decide

ATM

21 /41



EQr is undecidable (approach 1)

Let's prove that EQry is undecidable

EQry = {{M1, Mo)|L(My) = L(M2)}

Reduce from Ary;: AFSOC machine Mgg decides
EQry. We will construct a machine D to decide

Arum
1. D receives (M, w) as input

21 /41



EQr is undecidable (approach 1)

Let's prove that EQry is undecidable

EQry = {{M1, Mo)|L(My) = L(M2)}

Reduce from Ary;: AFSOC machine Mgg decides
EQrwm. We will construct a machine D to decide

Arum
1. D receives (M, w) as input
2. Create a new machine M,

21 /41



EQr is undecidable (approach 1)

Let's prove that EQry is undecidable

EQry = {{M1, Mo)|L(My) = L(M2)}

Reduce from Ary;: AFSOC machine Mgg decides
EQrwm. We will construct a machine D to decide
Ay
1. D receives (M, w) as input
2. Create a new machine M,
2.1 M, receives s as input

21 /41



EQr is undecidable (approach 1)

Let's prove that EQry is undecidable

EQry = {{M1, Mo)|L(My) = L(M2)}

Reduce from Ary;: AFSOC machine Mgg decides
EQrwm. We will construct a machine D to decide
Ay

1. D receives (M, w) as input

2. Create a new machine M,

2.1 M, receives s as input
2.2 If s =w, M, accepts. Otherwise, M, runs M on s

21 /41



EQr is undecidable (approach 1)

Let's prove that EQr\ is undecidable
EQrvm = {{M1, Ma)|L(My) = L(Ma)}

Reduce from Ary;: AFSOC machine Mgg decides
EQry. We will construct a machine D to decide
Ay

1. D receives (M, w) as input

2. Create a new machine M,

2.1 M, receives s as input
2.2 If s =w, M, accepts. Otherwise, M, runs M on s

When are M and M, equivalent?
21 /41



EQr is undecidable (approach 1)

Let's prove that EQry is undecidable
EQry = {(M1, Mp)|L(My) = L(M2)}

Reduce from Ary: AFSOC machine Mgg decides
EQrvm. We will construct a machine D to decide
Arm

1. D receives (M, w) as input
2. Create a new machine M,

2.1 M, receives s as input
2.2 If s =w, M, accepts. Otherwise, M, runs M on s

When are M and M, equivalent?
L(M) = L(M,) < M accepts w
21 /41



EQr is undecidable (approach 1)

Let's prove that EQry is undecidable

EQrm = {(M1, Mp)|L(My) = L(M2)}

Reduce from Ary;: AFSOC machine Mgg decides
EQrn. We will construct a machine D to decide
Ay

1. D receives (M, w) as input

2. Create a new machine M,

2.1 M, receives s as input
2.2 If s =w, M, accepts. Otherwise, M, runs M on s

3. Use MEQ to check if <M, M2> - EQTM

21 /41



EQr is undecidable (approach 1)

Let's prove that EQry is undecidable

EQrm = {(M1, Mp)|L(My) = L(M2)}

Reduce from Ary;: AFSOC machine Mgg decides
EQrn. We will construct a machine D to decide
Ay

1. D receives (M, w) as input

2. Create a new machine M,

2.1 M, receives s as input
2.2 If s =w, M, accepts. Otherwise, M, runs M on s

3. Use Mgg to check if (M, M,) € EQrm
3.1 If Mgg accepts (M, M,), then D accepts (M, w)

21 /41



EQr is undecidable (approach 1)

Let's prove that EQry is undecidable

EQrm = {(M1, Mp)|L(My) = L(M2)}

Reduce from Ary;: AFSOC machine Mgg decides
EQrn. We will construct a machine D to decide
Ay

1. D receives (M, w) as input

2. Create a new machine M,

2.1 M, receives s as input
2.2 If s =w, M, accepts. Otherwise, M, runs M on s

3. Use Mgg to check if (M, M,) € EQrm
3.1 If Mgg accepts (M, M,), then D accepts (M, w)
3.2 Otherwise D rejects (M, w)

21 /41



EQr is undecidable (approach 1)

() Accept Create machine M,:
Input:{M, w) . N 2
O Reject/loop Accept if input = w, otherwise, imitate M
() TBD
() Imitate M
— L(M)
— L(M,)
Case1: M accepts w Case2: M doesn t accept w
Then L(M) = Then L(M

VOO

If we can check if L(M) = L(M,), we can infer whether M accepts w

22 /41




EQTz is undecidable (approach 1)

AL = {<M, w> | M accepts w}
EQ,, ={<M,, M,> | L(M,) = L(M,)}

D

M

EQ .
Reject
Create machine M,;: v e
<M, w>||1. Take input s Use M, to Ves
—» check if ‘ Accept

— 2. Ifs=w, accept
3. Ifs#w,runMon L(M) = L(M,)

S
If we can decide EQTM, we can decide ATIVI

23 /41




EQr is undecidable (approach 2)

Let's prove that EQry is undecidable

EQrm = {(M1, Mp)|L(My) = L(M>)}

Reduce from Epy;: AFSOC machine Mg decides
EQrwm. We will construct a machine D to decide

Erm

24 / 41



EQr is undecidable (approach 2)

Let's prove that EQry is undecidable

EQrm = {(M1, Mp)|L(My) = L(M>)}

Reduce from Epy;: AFSOC machine Mg decides
EQrwm. We will construct a machine D to decide

Erm
1. D receives (M) as input

24 / 41



EQr is undecidable (approach 2)

Let's prove that EQry is undecidable

EQrv = {{M1, Ma)|L(My) = L(Ma) }

Reduce from Epy;: AFSOC machine Mg decides
EQrwm. We will construct a machine D to decide

Erm
1. D receives (M) as input
2. Create a new machine M, that recognizes ()

24 / 41



EQr is undecidable (approach 2)

Let's prove that EQry is undecidable
EQru = {(My, Mp)|L(My) = L(M)}

Reduce from Ep\;: AFSOC machine Mg decides
EQrym. We will construct a machine D to decide

Erym
1. D receives (M) as input
2. Create a new machine M, that recognizes ()

When are M and M, equivalent?

24 / 41



EQr is undecidable (approach 2)

Let's prove that EQry is undecidable
EQrm = {(M1, Mp)|L(My) = L(M>)}

Reduce from Ery;: AFSOC machine Mg decides
EQrym. We will construct a machine D to decide

Emn
1. D receives (M) as input
2. Create a new machine M, that recognizes ()

When are M and M, equivalent?
L(M)=L(M) < L(M)=10

24 / 41



EQr is undecidable (approach 2)

Let's prove that EQry is undecidable
EQrv = {{My, Mo)|L(My) = L(M-)}

Reduce from Er\;: AFSOC machine Mg decides
EQTn. We will construct a machine D to decide

Erm
1. D receives (M) as input

2. Create a new machine M, that recognizes ()
3. Use Mgq to check if (M, M,) € EQrm

24 / 41



EQr is undecidable (approach 2)

Let's prove that EQry is undecidable
EQrv = {{My, Mo)|L(My) = L(M-)}

Reduce from Er\;: AFSOC machine Mg decides
EQTn. We will construct a machine D to decide

Erm
1. D receives (M) as input

2. Create a new machine M, that recognizes ()
3. Use Mgq to check if (M, M,) € EQrm
3.1 If Mgg accepts (M, M,), then D accepts (M)

24 / 41



EQr is undecidable (approach 2)

Let's prove that EQry is undecidable
EQrv = {{My, Mo)|L(My) = L(M-)}

Reduce from Er\;: AFSOC machine Mg decides
EQTn. We will construct a machine D to decide
Erwm

1. D receives (M) as input

2. Create a new machine M, that recognizes ()

3. Use Mgq to check if (M, M,) € EQrm

3.1 If Mgg accepts (M, M,), then D accepts (M)
3.2 Otherwise D rejects (M)

24 / 41



EQr is undecidable (approach 2)

O o 0 Coae s machne
Reject/loop
() TBD
— L(M) L(M) = 2?72 > L(M,)=
— L(M,)
r X
Case 1: L(M) =@ Case 2: L(M) # @
Then L(M) = L(M,) Then L(M) # L(M,)
_ _ L(M) | L(M)° _
L(M)=@ L(M,) =& 2o L(M,) =@

If we can check if L(M) = L(M,), we can infer whether L(M) = @

25 / 41



EQTz is undecidable (approach 2)

E = {<M>| L(M) =2}
EQ,, ={<M,, M,> | L(M,) = L(M,)}

Create machine M,
that recognizes @

D

MEQ

v

Use MEQ to

— check if

L(M) = L(M,)

Reject
no j
yes
‘ Accept

If we can decide EQ

™’

we can decide ETM

26 / 41




EQr is undecidable (approach 3)

Let's prove that EQry is undecidable

EQrm = {(M1, Mp)|L(My) = L(M>)}

Reduce from ALLpy;: AFSOC machine Mg
decides EQmy. We will construct a machine D to
decide ALLty

27 /41



EQr is undecidable (approach 3)

Let's prove that EQry is undecidable

EQrm = {(M1, Mp)|L(My) = L(M>)}

Reduce from ALLpy;: AFSOC machine Mg
decides EQmy. We will construct a machine D to
decide ALLty

1. D receives (M) as input

27 /41



EQr is undecidable (approach 3)

Let's prove that EQry is undecidable

EQrv = {{M1, Ma)|L(My) = L(Ma) }

Reduce from ALLpy;: AFSOC machine Mg
decides EQmy. We will construct a machine D to
decide ALLty

1. D receives (M) as input
2. Create a new machine M, that recognizes > *

27 /41



EQr is undecidable (approach 3)

Let's prove that EQry is undecidable
EQru = {(My, Mp)|L(My) = L(M)}

Reduce from ALLpy;: AFSOC machine Mg
decides EQry. We will construct a machine D to

decide ALL7y
1. D receives (M) as input
2. Create a new machine M, that recognizes ¥*

When are M and M, equivalent?

27 /41



EQr is undecidable (approach 3)

Let's prove that EQry is undecidable
EQrm = {(M1, Mp)|L(My) = L(M>)}

Reduce from ALLyy: AFSOC machine Mg
decides EQmy. We will construct a machine D to
decide ALLy

1. D receives (M) as input
2. Create a new machine M, that recognizes ¥*

When are M and M, equivalent?
L(M) =L(M,) < L(M) =X%*

27 /41



EQr is undecidable (approach 3)

Let's prove that EQry is undecidable
EQrv = {{My, Mo)|L(My) = L(M-)}

Reduce from ALLpy;: AFSOC machine Mg
decides EQry. We will construct a machine D to
decide ALLpy

1. D receives (M) as input

2. Create a new machine M, that recognizes ¥*
3. Use Mgq to check if (M, M,) € EQrm

27 /41



EQr is undecidable (approach 3)

Let's prove that EQry is undecidable
EQrv = {{My, Mo)|L(My) = L(M-)}

Reduce from ALLpy;: AFSOC machine Mg
decides EQry. We will construct a machine D to
decide ALLpy

1. D receives (M) as input

2. Create a new machine M, that recognizes ¥*
3. Use Mgq to check if (M, M,) € EQrm
3.1 If Mgg accepts (M, M,), then D accepts (M)

27 /41



EQr is undecidable (approach 3)

Let's prove that EQry is undecidable
EQrv = {{My, Mo)|L(My) = L(M-)}

Reduce from ALLpy;: AFSOC machine Mg
decides EQry. We will construct a machine D to
decide ALLpy

1. D receives (M) as input

2. Create a new machine M, that recognizes ¥*
3. Use Mgq to check if (M, M,) € EQrm

3.1 If Mgg accepts (M, M,), then D accepts (M)
3.2 Otherwise D rejects (M)

27 /41



EQr is undecidable (approach 3)

e inputs () Creste s machine s
() TBD
— L(M) L(M) = 27?2 > L(M,)=%
— L(M,)
f X
Case 1: L(M) = Case2: L(M)#%
Then L(M) = L(M ) Then L(M) # L(M,)
. - L(M) | L(m)e .
L(M) =% L(M,) = = 25 g L(M,) = =

If we can check if L(M) = L(M,), we can infer whether L(M) = 3

28 / 41



EQTy is undecidable (approach 3)

ALL_ = {<M>|L(M) =X}
EQ,, ={<M,, M,> | L(M,) = L(M,)}

D

MEQ

Reject
¥ no i'
_ Use M_, to es
<M> Create machine M2 —» check ﬁro ‘ 2 Accept

that recognizes X
: L(M) = L(M,)

If we can decide EQ., ., we can decide ALLTM

™’

29 /41



The language SUBTy;

Consider the following language
SUBtM = {(My, Mp)|L(My) C L(M2)}

We receive two machines My, M, as input. We want
to determine if M; is contained within M,

30 /41



SUBT\ is undecidable

Let's prove that SUBT) is undecidable

SUBM = {(My, Mp)|L(My) C L(M>)}

31/41



SUBTy is undecidable

Let's prove that SUBT) is undecidable
SUBtv = {{My, Mp)|L(My) C L(Mo)}
We will reduce from each of the following languages

Ery = {{M)|L(M) = 0}
ALLty = {(M)|L(M) = L7}
EQrm = {(M1, Ma)|L(M1) = L(M)}

31/41



SUBr\ is undecidable (approach 1)

Let's prove that SUBTy; is undecidable
SUBv = {(My, Mp)|L(My) C L(M,)}

Reduce from E1y;: AFSOC SUBTy; is decided by
machine Ms. We will construct a machine D to
decide E1\; as follows:

32 /41



SUBr\ is undecidable (approach 1)

Let's prove that SUBTy; is undecidable
SUBv = {(My, Mp)|L(My) C L(M,)}

Reduce from E1y;: AFSOC SUBTy; is decided by
machine Ms. We will construct a machine D to
decide E1\; as follows:

1. D takes (M) as input

32 /41



SUBr\ is undecidable (approach 1)

Let's prove that SUBTy; is undecidable
SUBv = {(My, Mp)|L(My) C L(M,)}

Reduce from E1y;: AFSOC SUBTy; is decided by
machine Ms. We will construct a machine D to
decide E1\; as follows:

1. D takes (M) as input
2. Construct a machine M, that recognizes ()

32 /41



SUBr\ is undecidable (approach 1)

Let's prove that SUBT) is undecidable
SUBTm = {{(Mi1, Ma)|L(M1) C L(M,)}

Reduce from E1y;: AFSOC SUBTy; is decided by
machine Ms. We will construct a machine D to
decide E1)\; as follows:

1. D takes (M) as input
2. Construct a machine M, that recognizes ()
When does M, contain M?

32 /41



SUBT)\ is undecidable (approach 1)

Let's prove that SUBTy is undecidable
SUBTy = {(My, Mp)|L(M,y) C L(M,)}

Reduce from E1y;: AFSOC SUBry; is decided by
machine Ms. We will construct a machine D to
decide E1)\; as follows:

1. D takes (M) as input

2. Construct a machine M, that recognizes ()

When does M, contain M?
LIM) C L(My) & L(M)C )= L(M)=0

32 /41



SUBT)\ is undecidable (approach 1)

Let's prove that SUBT ) is undecidable
SUB\v = {(My, Mp)|L(My) C L(M,)}

Reduce from E1y;: AFSOC SUBTy; is decided by
machine Ms. We will construct a machine D to
decide E1\; as follows:

1. D takes (M) as input
2. Construct a machine M, that recognizes ()

When does M, contain M?
LIM) C L(My) & L(M)C D<= L(M)=10
<M, M2> € SUBT\ & </\/l> € Emum

32 /41



SUBr\ is undecidable (approach 1)

Let's prove that SUBTy is undecidable
SUBtw = {(My, Mp)|L(My) € L(M>)}

Reduce from E1y;: AFSOC SUBry; is decided by
machine Ms. We will construct a machine D to
decide E1)\; as follows:

1. D takes (M) as input

2. Construct a machine M, that recognizes ()

3. Use Ms to check if (M, M,) € SUB\
“Is M contained within a machine that accepts
nothing?”

32 /41



SUBr\ is undecidable (approach 1)

Let's prove that SUBTy is undecidable
SUBtw = {(My, Mp)|L(My) € L(M>)}

Reduce from E1y;: AFSOC SUBry; is decided by
machine Ms. We will construct a machine D to
decide E1)\; as follows:

1. D takes (M) as input

2. Construct a machine M, that recognizes ()

3. Use Ms to check if (M, M,) € SUB\
“Is M contained within a machine that accepts
nothing?”
3.1 If Ms accepts (M, M), then D accepts (M)

32 /41



SUBr\ is undecidable (approach 1)

Let's prove that SUBTy is undecidable
SUBtw = {(My, Mp)|L(My) € L(M>)}

Reduce from E1y;: AFSOC SUBry; is decided by
machine Ms. We will construct a machine D to
decide E1)\; as follows:

1. D takes (M) as input
2. Construct a machine M, that recognizes ()

3. Use Ms to check if (M, M,) € SUB\
“Is M contained within a machine that accepts
nothing?”
3.1 If Ms accepts (M, M), then D accepts (M)
3.2 Otherwise, D rejects (M)

32 /41



SUBT)\ is undecidable (approach 1)

() Accept Input: (M) C:ﬁa:e a mac;hineé\/l2
) Reject/loop at recognizes
() TBD
— L(W) L(M) = 227 > LM, =
— L(M,)
r )
Case 1: L(M) =9 Case2: L(IM)#Z
Then L(M) € L(M,) Then L(M) & L(M,)
_ _ L(M) [ L(M)° -
L(M)=2 L(M,)=9 £0 | 23 LM,)=0

If we can check if L(M) & L(M,), we can infer whether L(M) = &

33 /41



SUBT)\ is undecidable (approach 1)

E oy = {<M>| L(M) =2}
SUB_,, ={<M,, M,> | L(M,) < L(M,)}

D

Mg

v

Create machine M,
that recognizes @

Use MS to
check if
L(M) < L(M,)

Reject
no j
yes
‘ Accept

If we can decide SUB

vy We can

decide ETM

34 /41




SUBr\ is undecidable (approach 2)

Let's prove that SUBTy; is undecidable
SUBv = {(My, Mp)|L(My) C L(M,)}

Reduce from ALLty: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide ALLty; as follows:

35 /41



SUBr\ is undecidable (approach 2)

Let's prove that SUBTy; is undecidable
SUBv = {(My, Mp)|L(My) C L(M,)}

Reduce from ALLty: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide ALLty; as follows:

1. D takes (M) as input

35 /41



SUBr\ is undecidable (approach 2)

Let's prove that SUBTy; is undecidable
SUBv = {(My, Mp)|L(My) C L(M,)}

Reduce from ALLty: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide ALLty; as follows:

1. D takes (M) as input
2. Construct a machine M, that recognizes ¥*

35 /41



SUBr\ is undecidable (approach 2)

Let's prove that SUBT) is undecidable
SUBTm = {{(Mi1, Ma)|L(M1) C L(M,)}

Reduce from ALLty: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide ALLty; as follows:

1. D takes (M) as input
2. Construct a machine M, that recognizes ¥*
When does M contain My?

35 /41



SUBT)\ is undecidable (approach 2)

Let's prove that SUBTy is undecidable
SUBTy = {(My, Mp)|L(M,y) C L(M,)}

Reduce from ALLpy: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide ALLty as follows:

1. D takes (M) as input

2. Construct a machine M, that recognizes ¥*

When does M contain My?
L(Mp) CL(M)< X CL(M) <= L(M)=X"

35 /41



SUBT)\ is undecidable (approach 2)

Let's prove that SUBT ) is undecidable
SUB\v = {(My, Mp)|L(My) C L(M,)}

Reduce from ALLty: AFSOC SUBTyy is decided
by machine Ms. We will construct a machine D to
decide ALLty; as follows:

1. D takes (M) as input
2. Construct a machine M, that recognizes ¥*

When does M contain M,?
L(Mp) CLM)< X CL(M) < L(M)=X"
<M2, M> € SUBT\ & </\/l> € ALLty

35 /41



SUBr\ is undecidable (approach 2)

Let's prove that SUBTy is undecidable
SUBtw = {(My, Mp)|L(My) € L(M>)}

Reduce from ALL7y\: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to

decide ALLty as follows:
1. D takes (M) as input
2. Construct a machine M, that recognizes ¥*

3. Use Ms to check if (Mp, M) € SUBTMm
“Does M contain a machine that accepts

everything?”

35 /41



SUBr\ is undecidable (approach 2)

Let's prove that SUBTy is undecidable
SUBtw = {(My, Mp)|L(My) € L(M>)}

Reduce from ALL7y\: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide ALLty as follows:

1. D takes (M) as input

2. Construct a machine M, that recognizes ¥*

3. Use Ms to check if (Mp, M) € SUBTMm
“Does M contain a machine that accepts
everything?”
3.1 If Ms accepts (M, M), then D accepts (M)

35 /41



SUBr\ is undecidable (approach 2)

Let's prove that SUBTy is undecidable
SUBtw = {(My, Mp)|L(My) € L(M>)}

Reduce from ALL7y\: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide ALLty as follows:

1. D takes (M) as input

2. Construct a machine M, that recognizes ¥*

3. Use Ms to check if (Mp, M) € SUBTMm
“Does M contain a machine that accepts
everything?”
3.1 If Ms accepts (M, M), then D accepts (M)
3.2 Otherwise, D rejects (M)
35 /41



SUBT)\ is undecidable (approach 2)

O o
Reject/loop
() TBD
— L(M) L(M) = 222 > L(M,)=5*
— L(M,)
Case 1: L(M) =" Case 2: L(M)#%’
Then L(M,) € L(M) Then L(M,) & L(M)
. . . L(M) | L(M)°®
L(M,) = = L(M,) = = L(M,) = = 23 B

If we can check if L(M,) & L(M), we can infer whether L(M) = &’

36 /41



SUBTy\ is undecidable (approach 2)

ALL., = {<M, w> | L(M) = X'}
SUB_,, ={<M,, M,> | L(M,) < L(M,)}

D

Mg

Reject
¥ no i'
M _ Use M, to es
~M> ,|Create machine M, | check /Y Accept

that recognizes Z L(M,) S L(M)

If we can decide SUB_, ., we can decide ALLTM

™’

37 /41



SUBr is undecidable (approach 3)

Let's prove that SUBT) is undecidable
SUBM = {(My, Mp)|L(My) C L(M,)}

Reduce from EQry: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide EQmwm as follows:

38 /41



SUBr is undecidable (approach 3)

Let's prove that SUBT) is undecidable
SUBM = {(My, Mp)|L(My) C L(M,)}

Reduce from EQry: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide EQmwm as follows:

1. D takes (M;, My) as input

38 /41



SUBr is undecidable (approach 3)

Let's prove that SUBT ) is undecidable
SUBv = {(My, Mp)|L(My) C L(M,)}

Reduce from EQmy: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide EQmy as follows:

1. D takes (M;, M) as input
When does M, equal M,?

38 /41



SUBT)\ is undecidable (approach 3)

Let's prove that SUBTy is undecidable
SUBTy = {(My, Mo)|L(M,y) C L(M,)}

Reduce from EQmy: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to

decide EQry\ as follows:
1. D takes (M;, My) as input

When does My equal M,?
L(My) = L(My) < L(My) C L(M)AL(M) C L(My)

38 /41



SUBT)\ is undecidable (approach 3)

Let's prove that SUBTy is undecidable
SUBTy = {(My, Mp)|L(My) C L(M,)}

Reduce from EQmy: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide EQmw as follows:

1. D takes (M;, My) as input
When does M, equal M,?
L(My) = L(M2) < L(My) C L(M2)AL(M) C© L(My)
(My, My) € EQrv < (My, My), (Mo, My) € SUBTy

38 /41



SUBr is undecidable (approach 3)

Let's prove that SUBTy is undecidable
SUBT\M = {<M17 M2>|L(Ml) - L(MQ)}

Reduce from EQmy: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide EQmv as follows:

1. D takes (M;, M) as input

2. Use Ms to check if (M;, Mp) € SUBT\ and

<M2, M1> - SUBTM
“Do M; and M, contain each other?”

38 /41



SUBr is undecidable (approach 3)

Let's prove that SUBTy is undecidable
SUBT\M = {<M17 M2>|L(Ml) - L(MQ)}

Reduce from EQmy: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide EQmv as follows:
1. D takes (M;, M) as input
2. Use Ms to check if (M;, Mp) € SUBT\ and
<M2, M1> c SUBTM
“Do M; and M, contain each other?”
2.1 If Ms accepts (My, My) and (M, M;), then D
accepts (My, M)

38 /41



SUBr is undecidable (approach 3)

Let's prove that SUBTy is undecidable
SUBT\M = {<M17 M2>|L(Ml) - L(MQ)}

Reduce from EQmy: AFSOC SUBTy is decided
by machine Ms. We will construct a machine D to
decide EQmv as follows:

1. D takes (M;, M) as input

2. Use Ms to check if (M;, Mp) € SUBT\ and

<M2, M1> € SUBTMm

“Do M; and M, contain each other?”

2.1 If Ms accepts (My, My) and (M, M;), then D
accepts (My, M)

2.2 Otherwise, D rejects (M, M)

38 /41



SUBr is undecidable (approach 3)

_— Input:{M,, M,) O LM,)
() Ly

Case 1: L(M,) = L(M 2 Case 2: L(M,) # L(M,)
Then L( ,) S L(M) Then either L(M,) & ( ,)
and L(M,) € L(M,) or L(M )QLMZ)

<«
@ OO0 O

If we can check if L(M,) ) (and vice
versa), we can infer whether L(M ) = L(M,)

39 /41



SUBT is undecidable (approach 3)

EQ;, = {<M,, M,> | L(M,) = L(M,)}
SUB,, ={<M,, M,> | L(M,) S L(M,)}

Mg

<|V|1, M2>

D

‘l

Use M to check if
L(M,) € L(M,)

yes

Use I\/IS to check if
L(IVI2) c L(M1)

es

no

Reject

Yy
:no

Accept

Reject

If we can decide SUB

™"’

we can decide EC)TM

40 / 41




Reducibility

Recap: If we could solve certain problems, we
would be able to solve other problems

41 /41



Reducibility

Recap: If we could solve certain problems, we
would be able to solve other problems

» We can use reducibility to prove undecidability

41 /41



Reducibility

Recap: If we could solve certain problems, we
would be able to solve other problems

» We can use reducibility to prove undecidability

» If A<+ B and A is known to be undecidable,
then B must also be undecidable

41 /41



