Theory of Computation Undecidable Languages

Arjun Chandrasekhar

We want to show that language B is undecidable

We want to show that language B is undecidable

We want to show that language B is undecidable

Technique: Use reducibility to prove that a language is decidable

1. AFSOC *B* is decidable

We want to show that language B is undecidable

- 1. AFSOC *B* is decidable
- 2. Show that $A \leq_T B$ "If we can decide B we can also decide A"

We want to show that language B is undecidable

- 1. AFSOC *B* is decidable
- 2. Show that $A \leq_T B$ "If we can decide B we can also decide A"
- 3. But A is known to be undecidable

We want to show that language B is undecidable

- 1. AFSOC *B* is decidable
- 2. Show that $A \leq_T B$ "If we can decide B we can also decide A"
- 3. But A is known to be undecidable
 - This is a contradiction!

We want to show that language B is undecidable

- 1. AFSOC *B* is decidable
- 2. Show that $A \leq_T B$ "If we can decide B we can also decide A"
- 3. But A is known to be undecidable
 - This is a contradiction!
- 4. We conclude that *B* was never decidable in the first place

Consider the following language

```
E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}
```

Consider the following language

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

▶ We receive a TM description $\langle M \rangle$ as input

Consider the following language

$$\mathrm{E}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- ▶ We receive a TM description $\langle M \rangle$ as input
- We want to determine whether M is capable of accepting any strings or not

Consider the following language

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- We receive a TM description $\langle M \rangle$ as input
- We want to determine whether M is capable of accepting any strings or not
- ▶ We accept $\langle M \rangle$ if M rejects or loops on every string; otherwise we reject $\langle M \rangle$

E_{TM} is undecidable

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

E_{TM} is undecidable

Let's prove that E_{TM} is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset\}$$

- ► Hint 1: Reduce from A_{TM}
- ► Hint 2: Your solution will involve constructing a machine *P* at runtime

Let's prove that $E_{\rm TM}$ is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

AFSOC machine M_E decides $E_{\rm TM}$. We will construct a machine D to decide $A_{\rm TM}$

1. D receives $\langle M, w \rangle$ as input

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 If s = w, run M on sIf $s \neq w$, reject M and w are hard-coded constants

Let's prove that $E_{\rm TM}$ is undecidable

```
E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}
```

AFSOC machine M_E decides E_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 If s = w, run M on s If $s \neq w$, reject

M and w are hard-coded constants

What is L(P)?

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

AFSOC machine M_E decides $E_{\rm TM}$. We will construct a machine D to decide $A_{\rm TM}$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 If s = w, run M on s

If $s \neq w$, reject

M and w are hard-coded constants

What is L(P)? If M accepts w then $L(P) = \{w\}$

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

AFSOC machine M_E decides $E_{\rm TM}$. We will construct a machine D to decide $A_{\rm TM}$

- 1. D receives $\langle M, w \rangle$ as input 2. Create a new machine P
 - 2.1 D receives a sa input
 - 2.1 P receives s as input 2.2 If s = w, run M on s

If $s \neq w$, reject

M and w are hard-coded constants

What is L(P)?

If M accepts w then $L(P) = \{w\}$ If M doesn't accept w then $L(P) = \emptyset$

Let's prove that $E_{\rm TM}$ is undecidable

$$\mathrm{E_{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset\}$$

AFSOC machine M_E decides E_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input 2. Create a new machine P
 - Create a new machine P
 2.1 P receives s as input
 - 2.1 F receives s as input 2.2 If s = w, run M on s

If $s \neq w$, reject M and w are hard-coded constants

What is L(P)?

If M accepts w then $L(P) = \{w\}$ If M doesn't accept w then $L(P) = \emptyset$ $\langle P \rangle \in E_{\mathrm{TM}} \Leftrightarrow \langle M, w \rangle \notin A_{\mathrm{TM}}$

Let's prove that E_{TM} is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

AFSOC machine M_E decides $E_{\rm TM}$. We will construct a machine D to decide $A_{\rm TM}$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 If s = w, run M on s If $s \neq w$, reject

M and w are hard-coded constants

3. Use M_E to check if $\langle P \rangle \in \mathcal{E}_{TM}$

Let's prove that E_{TM} is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 If s = w, run M on sIf $s \neq w$, reject M and w are hard-coded constants
- 3. Use M_E to check if $\langle P \rangle \in E_{TM}$
 - 3.1 If M_E accepts $\langle P \rangle$, D rejects $\langle M, w \rangle$

Let's prove that E_{TM} is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } \mathit{L}(M) = \emptyset \}$$

AFSOC machine M_E decides $E_{\rm TM}$. We will construct a machine D to decide $A_{\rm TM}$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 *P* receives *s* as input
 - 2.2 If s = w, run M on s If $s \neq w$, reject

M and w are hard-coded constants

- 3. Use M_E to check if $\langle P \rangle \in \mathcal{E}_{\mathrm{TM}}$
 - 3.1 If M_E accepts $\langle P \rangle$, D rejects $\langle M, w \rangle$
 - 3.2 If M_E rejects $\langle P \rangle$, D accepts $\langle M, w \rangle$

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ accepts } w \}$$
$$E_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

If we can decide E_{TM} , we can decide A_{TM}

$E_{\rm TM}$ is undecidable (approach 2)

Let's prove that $E_{\rm TM}$ is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

E_{TM} is undecidable (approach 2)

Let's prove that E_{TM} is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

AFSOC machine M_E decides $E_{\rm TM}$. We will construct a machine D to decide $A_{\rm TM}$

1. D receives $\langle M, w \rangle$ as input

E_{TM} is undecidable (approach 2)

Let's prove that E_{TM} is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P

Let's prove that $E_{\rm TM}$ is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{\langle \mathit{M} \rangle | \mathit{M} \text{ is a Turing Machine, } \mathit{L}(\mathit{M}) = \emptyset\}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input

E_{TM} is undecidable (approach 2)

Let's prove that E_{TM} is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

AFSOC machine M_E decides E_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

M and w are hard-coded constants

Let's prove that E_{TM} is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset\}$$

AFSOC machine M_E decides E_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w
 M and w are hard-coded constants

What is L(P)?

E_{TM} is undecidable (approach 2)

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w
 M and w are hard-coded constants

```
What is L(P)?
If M accepts w then L(P) = \Sigma^*
```

E_{TM} is undecidable (approach 2)

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w
 M and w are hard-coded constants

```
What is L(P)?
If M accepts w then L(P) = \Sigma^*
If M doesn't accept w then L(P) = \emptyset
```

Let's prove that $E_{\rm TM}$ is undecidable

$$\mathrm{E}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } \mathit{L}(M) = \emptyset \}$$

AFSOC machine M_E decides $E_{\rm TM}$. We will construct a machine D to decide $A_{\rm TM}$

- 1. D receives $\langle M, w \rangle$ as input 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

M and w are hard-coded constants

What is L(P)? If M accepts w then $L(P) = \Sigma^*$ If M doesn't accept w then $L(P) = \emptyset$ $\langle P \rangle \in \mathbb{E}_{TM} \Leftrightarrow \langle M, w \rangle \notin \mathcal{A}_{TM}$

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w
 M and w are hard-coded constants
- 3. Use M_E to check if $\langle P \rangle \in \mathcal{E}_{TM}$

Let's prove that $E_{\rm TM}$ is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w
 M and w are hard-coded constants
- 3. Use M_E to check if $\langle P \rangle \in \mathcal{E}_{TM}$
 - 3.1 If M_E accepts $\langle P \rangle$, D rejects $\langle M, w \rangle$

Let's prove that E_{TM} is undecidable

$$E_{TM} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \emptyset \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w
 M and w are hard-coded constants
- 3. Use M_E to check if $\langle P \rangle \in \mathcal{E}_{TM}$
 - 3.1 If M_E accepts $\langle P \rangle$, D rejects $\langle M, w \rangle$
 - 3.2 If M_E rejects $\langle P \rangle$, D accepts $\langle M, w \rangle$

$$A_{TM} = \{ | M \text{ accepts } w \}$$
$$E_{TM} = \{ | L(M) = \emptyset \}$$

If we can decide E_{TM} , we can decide A_{TM}

The language ALL_{TM}

Consider the following language

$$ALL_{TM} = \{\langle M \rangle | L(M) = \Sigma^* \}$$

We receive a TM description as input, and want to figure out if that TM accepts everything

ALL_{TM} is undecidable

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle \mathit{M} \rangle | \mathit{M} \text{ is a Turing Machine, } \mathit{L}(\mathit{M}) = \Sigma^* \}$$

ALL_{TM} is undecidable

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } \mathit{L}(M) = \Sigma^* \}$$

- ► Hint 1: Reduce from A_{TM}
- ► Hint 2: Your solution will involve constructing a machine *P* at runtime

Let's prove that ALL_{TM} is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle \mathit{M} \rangle | \mathit{M} \text{ is a Turing Machine, } \mathit{L}(\mathit{M}) = \Sigma^* \}$$

AFSOC machine M_A decides $\mathrm{ALL}_{\mathrm{TM}}$. We will construct a machine D to decide A_{TM}

1. D receives $\langle M, w \rangle$ as input

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } \mathit{L}(M) = \Sigma^* \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } \mathit{L}(M) = \Sigma^* \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } \mathit{L}(M) = \Sigma^* \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 If s = w, run M on sIf $s \neq w$, accept M and w are hard-coded constants

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 If s = w, run M on s If $s \neq w$, accept

M and w are hard-coded constants

What is L(P)?

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 *P* receives *s* as input
 - 2.2 If s = w, run M on s

If $s \neq w$, accept

M and w are hard-coded constants What is L(P)?

If M accepts w then $L(P) = \Sigma^*$

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

AFSOC machine M_A decides $\mathrm{ALL}_{\mathrm{TM}}$. We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input 2. Create a new machine P
 - 2.1 *P* receives *s* as input
 - 2.2 If s = w. run M on s

If $s \neq w$, accept

M and w are hard-coded constants

What is L(P)?

If M accepts w then $L(P) = \Sigma^*$ If M doesn't accept w then $L(P) = \Sigma^* \setminus \{w\}$

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle \textit{M} \rangle | \textit{M} \; \mathsf{is a Turing Machine}, \; \textit{L}(\textit{M}) = \Sigma^* \}$$

AFSOC machine M_A decides $\mathrm{ALL_{TM}}$. We will construct a machine D to decide $\mathrm{A_{TM}}$

- 1. D receives $\langle M, w \rangle$ as input 2. Create a new machine P
- 2.1 P receives s as input

2.2 If s = w, run M on s If $s \neq w$, accept

If $s \neq w$, accept M and w are hard-coded constants

What is L(P)?

If M accepts w then $L(P) = \Sigma^*$ If M doesn't accept w then $L(P) = \Sigma^* \setminus \{w\}$ $\langle P \rangle \in \mathrm{ALL}_{\mathrm{TM}} \Leftrightarrow \langle M, w \rangle \in \mathrm{A}_{\mathrm{TM}}$

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } \mathit{L}(M) = \Sigma^* \}$$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 If s = w, run M on sIf $s \neq w$, accept

M and w are hard-coded constants

3. Use M_A to check if $\langle P \rangle \in \mathrm{ALL}_{\mathrm{TM}}$

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 If s = w, run M on s If $s \neq w$, accept

M and w are hard-coded constants

- 3. Use M_A to check if $\langle P \rangle \in \text{ALL}_{\text{TM}}$
 - 3.1 If M_A accepts $\langle P \rangle$, D accepts $\langle M, w \rangle$

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 *P* receives *s* as input

2.2 If s = w, run M on s If $s \neq w$, accept

M and w are hard-coded constants

- 3. Use M_A to check if $\langle P \rangle \in \mathrm{ALL}_{\mathrm{TM}}$ 3.1 If M_A accepts $\langle P \rangle$, D accepts $\langle M, w \rangle$
 - 3.2 If M_A rejects $\langle P \rangle$, D rejects $\langle M, w \rangle$

$$A_{TM} = \{ | M \text{ accepts } w\}$$

$$ALL_{TM} = \{ | L(M) = \Sigma^*\}$$

If we can decide ALL_{TM} , we can decide A_{TM}

ALL_{TM} is undecidable (approach 2)

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } \mathit{L}(M) = \Sigma^* \}$$

AFSOC machine M_A decides $\mathrm{ALL}_{\mathrm{TM}}$. We will construct a machine D to decide A_{TM}

1. D receives $\langle M, w \rangle$ as input

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

 M and w are hard-coded constants

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } \mathit{L}(M) = \Sigma^* \}$$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

M and w are hard-coded constants

What is L(P)?

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

AFSOC machine M_A decides $\mathrm{ALL}_{\mathrm{TM}}$. We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

 M and w are hard-coded constants

What is L(P)? If M accepts w then $L(P) = \Sigma^*$

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine *P*
 - 2.1 P receives s as input

2.2 Ignore s, run M on w

M and w are hard-coded constants

```
What is L(P)?
If M accepts w then L(P) = \Sigma^*
If M doesn't accept w then L(P) = \emptyset
```

Let's prove that ALL_{TM} is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{\langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input 2. Create a new machine P
 - Create a new machine r
 - 2.1 *P* receives *s* as input 2.2 Ignore s, run M on w

M and w are hard-coded constants

What is
$$L(P)$$
?
If M accepts w then $L(P) = \Sigma^*$
If M doesn't accept w then $L(P) = \emptyset$
 $\langle P \rangle \in \mathrm{ALL}_{\mathrm{TM}} \Leftrightarrow \langle M, w \rangle \in \mathrm{A}_{\mathrm{TM}}$

Let's prove that ALL_{TM} is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

 M and w are hard-coded constants
- 3. Use M_A to check if $\langle P \rangle \in \mathrm{ALL}_{\mathrm{TM}}$

Let's prove that ALL_{TM} is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

 M and w are hard-coded constants
- 3. Use M_A to check if $\langle P \rangle \in \text{ALL}_{\text{TM}}$
 - 3.1 If M_A accepts $\langle P \rangle$, D accepts $\langle M, w \rangle$

Let's prove that $\mathrm{ALL}_{\mathrm{TM}}$ is undecidable

$$\mathrm{ALL}_{\mathrm{TM}} = \{ \langle M \rangle | M \text{ is a Turing Machine, } L(M) = \Sigma^* \}$$

AFSOC machine M_A decides ALL_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine P
 - 2.1 P receives s as input
 - 2.2 Ignore s, run M on w

 M and w are hard-coded constants

3. Use M_A to check if $\langle P \rangle \in \mathrm{ALL}_{\mathrm{TM}}$

- 3.1 If M_A accepts $\langle P \rangle$, D accepts $\langle M, w \rangle$
- 3.2 If M_A rejects $\langle P \rangle$, D rejects $\langle M, w \rangle$

$$A_{TM} = \{ | M \text{ accepts } w\}$$

$$ALL_{TM} = \{ | L(M) = \Sigma^*\}$$

If we can decide ALL_{TM} , we can decide A_{TM}

The language $\mathrm{EQ}_{\mathrm{TM}}$

$$EQ_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) = L(M_2)\}$$

We receive two Turing machine descriptions, and we want to determine out if the two machines are equivalent

The language $\mathrm{EQ}_{\mathrm{TM}}$

$$EQ_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) = L(M_2)\}$$

We receive two Turing machine descriptions, and we want to determine out if the two machines are equivalent

Can we write a script to check that your programming assignment submissions are equivalent to my solution code?

The language $\mathrm{EQ}_{\mathrm{TM}}$

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

We receive two Turing machine descriptions, and we want to determine out if the two machines are equivalent

- Can we write a script to check that your programming assignment submissions are equivalent to my solution code?
 - "equivalent" as in "the EXACT same output on ALL (possible) test cases"

EQ_{TM} is undecidable

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

We will reduce from each of the following languages

$$egin{aligned} & \mathrm{A_{TM}} = \{\langle M, w
angle | w \in L(M) \} \ & \mathrm{E_{TM}} = \{\langle M
angle | L(M) = \emptyset \} \ & \mathrm{ALL_{TM}} = \{\langle M
angle | L(M) = \Sigma^* \} \end{aligned}$$

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

Reduce from A_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide A_{TM}

1. D receives $\langle M, w \rangle$ as input

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2
 - 2.1 M_2 receives s as input

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2
 - 2.1 M_2 receives s as input
 - 2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

Reduce from A_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2
 - 2.1 M_2 receives s as input
 - 2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s

When are M and M_2 equivalent?

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \mathit{M}_1, \mathit{M}_2 \rangle | \mathit{L}(\mathit{M}_1) = \mathit{L}(\mathit{M}_2)\}$$

Reduce from A_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide A_{TM}

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2
 - 2.1 M_2 receives s as input
 - 2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s

When are M and M_2 equivalent? $L(M) = L(M_2) \Leftrightarrow M$ accepts w

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2
 - 2.1 M_2 receives s as input
 - 2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in EQ_{TM}$

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2
 - 2.1 M_2 receives s as input
 - 2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in \mathrm{EQ_{TM}}$ 3.1 If M_{EQ} accepts $\langle M, M_2 \rangle$, then D accepts $\langle M, w \rangle$

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \mathit{M}_1, \mathit{M}_2 \rangle | \mathit{L}(\mathit{M}_1) = \mathit{L}(\mathit{M}_2)\}$$

- 1. D receives $\langle M, w \rangle$ as input
- 2. Create a new machine M_2
 - 2.1 M_2 receives s as input
 - 2.2 If s = w, M_2 accepts. Otherwise, M_2 runs M on s
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in \mathrm{EQ}_{\mathrm{TM}}$
 - 3.1 If M_{EQ} accepts $\langle M, M_2 \rangle$, then D accepts $\langle M, w \rangle$
 - 3.2 Otherwise *D* rejects $\langle M, w \rangle$

$$A_{TM} = \{ < M, w > | M \text{ accepts } w \}$$

 $EQ_{TM} = \{ < M_1, M_2 > | L(M_1) = L(M_2) \}$

If we can decide EQ_{TM} , we can decide A_{TM}

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \mathit{M}_1, \mathit{M}_2 \rangle | \mathit{L}(\mathit{M}_1) = \mathit{L}(\mathit{M}_2)\}$$

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

Reduce from E_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide E_{TM}

1. D receives $\langle M \rangle$ as input

Let's prove that $\mathrm{EQ}_{\mathrm{TM}}$ is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes \emptyset

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

Reduce from E_{TM} : AFSOC machine M_{EQ} decides EQ_{TM} . We will construct a machine D to decide E_{TM}

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes \emptyset

When are M and M_2 equivalent?

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes \emptyset When are M and M_2 equivalent? $L(M) = L(M_2) \Leftrightarrow L(M) = \emptyset$

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes \emptyset
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in EQ_{TM}$

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes \emptyset
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in \mathrm{EQ_{TM}}$ 3.1 If M_{EQ} accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \mathit{M}_1, \mathit{M}_2 \rangle | \mathit{L}(\mathit{M}_1) = \mathit{L}(\mathit{M}_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes \emptyset
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in \mathrm{EQ_{TM}}$
 - 3.1 If M_{EQ} accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$
 - 3.2 Otherwise D rejects $\langle M \rangle$

$$E_{TM} = \{ | L(M) = \emptyset \}$$

 $EQ_{TM} = \{ | L(M_1) = L(M_2) \}$

If we can decide EQ_TM , we can decide E_TM

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

Let's prove that EQ_{TM} is undecidable

$$EQ_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) = L(M_2)\}$$

Reduce from ${\rm ALL_{TM}}$: AFSOC machine M_{EQ} decides ${\rm EQ_{TM}}$. We will construct a machine D to decide ${\rm ALL_{TM}}$

1. D receives $\langle M \rangle$ as input

Let's prove that EQ_{TM} is undecidable

$$EQ_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) = L(M_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes Σ^*

Let's prove that EQ_{TM} is undecidable

$$EQ_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) = L(M_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes Σ^* When are M and M_2 equivalent?

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes Σ^* When are M and M_2 equivalent? $L(M) = L(M_2) \Leftrightarrow L(M) = \Sigma^*$

Let's prove that EQ_{TM} is undecidable

$$EQ_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) = L(M_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes Σ^*
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in EQ_{TM}$

Let's prove that EQ_{TM} is undecidable

$$\mathrm{EQ_{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes Σ^*
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in \mathrm{EQ_{TM}}$ 3.1 If M_{EQ} accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$

Let's prove that EQ_{TM} is undecidable

$$EQ_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) = L(M_2)\}$$

- 1. D receives $\langle M \rangle$ as input
- 2. Create a new machine M_2 that recognizes Σ^*
- 3. Use M_{EQ} to check if $\langle M, M_2 \rangle \in \mathrm{EQ}_{\mathrm{TM}}$
 - 3.1 If M_{EQ} accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$
 - 3.2 Otherwise D rejects $\langle M \rangle$

$$ALL_{TM} = \{ | L(M) = \Sigma^* \}$$

 $EQ_{TM} = \{ | L(M_1) = L(M_2) \}$

If we can decide EQ_{TM} , we can decide ALL_{TM}

The language SUB_{TM}

Consider the following language

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \mathit{M}_1, \mathit{M}_2 \rangle | \mathit{L}(\mathit{M}_1) \subseteq \mathit{L}(\mathit{M}_2) \}$$

We receive two machines M_1 , M_2 as input. We want to determine if M_1 is contained within M_2

SUB_{TM} is undecidable

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

SUB_{TM} is undecidable

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$SUB_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2) \}$$

We will reduce from each of the following languages

$$egin{aligned} & \mathrm{E}_{\mathrm{TM}} = \{\langle \textit{M} \rangle | \textit{L}(\textit{M}) = \emptyset \} \ & \mathrm{ALL}_{\mathrm{TM}} = \{\langle \textit{M} \rangle | \textit{L}(\textit{M}) = \Sigma^* \} \ & \mathrm{EQ}_{\mathrm{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2) \} \end{aligned}$$

Let's prove that SUB_{TM} is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

Reduce from E_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide E_{TM} as follows:

1. D takes $\langle M \rangle$ as input

Let's prove that SUB_TM is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset

Let's prove that SUB_{TM} is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset When does M_2 contain M?

Let's prove that SUB_{TM} is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \mathit{M}_1, \mathit{M}_2 \rangle | \mathit{L}(\mathit{M}_1) \subseteq \mathit{L}(\mathit{M}_2) \}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset

When does
$$M_2$$
 contain M ? $L(M) \subseteq L(M_2) \Leftrightarrow L(M) \subseteq \emptyset \Leftrightarrow L(M) = \emptyset$

Let's prove that SUB_{TM} is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset

When does
$$M_2$$
 contain M ?
 $L(M) \subseteq L(M_2) \Leftrightarrow L(M) \subseteq \emptyset \Leftrightarrow L(M) = \emptyset$
 $\langle M, M_2 \rangle \in \mathrm{SUB}_{\mathrm{TM}} \Leftrightarrow \langle M \rangle \in \mathrm{E}_{\mathrm{TM}}$

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset
- 3. Use M_S to check if $\langle M, M_2 \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ "Is M contained within a machine that accepts nothing?"

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset
- 3. Use M_S to check if $\langle M, M_2 \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ "Is M contained within a machine that accepts nothing?"
 - 3.1 If M_S accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$

Let's prove that SUB_{TM} is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \mathit{M}_1, \mathit{M}_2 \rangle | \mathit{L}(\mathit{M}_1) \subseteq \mathit{L}(\mathit{M}_2) \}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes \emptyset
- 3. Use M_S to check if $\langle M, M_2 \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ "Is M contained within a machine that accepts nothing?"
 - 3.1 If M_S accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$
 - 3.2 Otherwise, D rejects $\langle M \rangle$

$$\begin{aligned} \mathsf{E}_{\mathsf{TM}} &= \{ <\mathsf{M} > \mid \mathsf{L}(\mathsf{M}) = \varnothing \} \\ \mathsf{SUB}_{\mathsf{TM}} &= \{ <\mathsf{M}_1, \, \mathsf{M}_2 > \mid \mathsf{L}(\mathsf{M}_1) \subseteq \mathsf{L}(\mathsf{M}_2) \} \end{aligned}$$

If we can decide SUB_{TM} , we can decide E_{TM}

Let's prove that SUB_{TM} is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

Let's prove that SUB_TM is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

Reduce from ALL_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide ALL_{TM} as follows:

1. D takes $\langle M \rangle$ as input

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes Σ^*

Let's prove that SUB_{TM} is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes Σ^* When does M contain M_2 ?

Let's prove that SUB_{TM} is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes Σ^*

When does
$$M$$
 contain M_2 ? $L(M_2) \subseteq L(M) \Leftrightarrow \Sigma^* \subseteq L(M) \Leftrightarrow L(M) = \Sigma^*$

Let's prove that SUB_{TM} is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes Σ^*

```
When does M contain M_2?

L(M_2) \subseteq L(M) \Leftrightarrow \Sigma^* \subseteq L(M) \Leftrightarrow L(M) = \Sigma^*

\langle M_2, M \rangle \in \mathrm{SUB}_{\mathrm{TM}} \Leftrightarrow \langle M \rangle \in \mathrm{ALL}_{\mathrm{TM}}
```

Let's prove that SUB_{TM} is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes Σ^*
- 3. Use M_S to check if $\langle M_2, M \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ "Does M contain a machine that accepts everything?"

Let's prove that SUB_{TM} is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes Σ^*
- 3. Use M_S to check if $\langle M_2, M \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ "Does M contain a machine that accepts everything?"
 - 3.1 If M_S accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \mathit{M}_1, \mathit{M}_2 \rangle | \mathit{L}(\mathit{M}_1) \subseteq \mathit{L}(\mathit{M}_2) \}$$

- 1. D takes $\langle M \rangle$ as input
- 2. Construct a machine M_2 that recognizes Σ^*
- 3. Use M_S to check if $\langle M_2, M \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ "Does M contain a machine that accepts everything?"
 - 3.1 If M_S accepts $\langle M, M_2 \rangle$, then D accepts $\langle M \rangle$
 - 3.2 Otherwise, D rejects $\langle M \rangle$

$$ALL_{TM} = \{ < M, w > | L(M) = \Sigma^* \}$$

 $SUB_{TM} = \{ < M_1, M_2 > | L(M_1) \subseteq L(M_2) \}$

If we can decide SUB_{TM} , we can decide ALL_{TM}

Let's prove that SUB_{TM} is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \mathit{M}_1, \mathit{M}_2 \rangle | \mathit{L}(\mathit{M}_1) \subseteq \mathit{L}(\mathit{M}_2) \}$$

Let's prove that SUB_{TM} is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

Reduce from EQ_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide EQ_{TM} as follows:

1. D takes $\langle M_1, M_2 \rangle$ as input

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

Reduce from EQ_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide EQ_{TM} as follows:

1. D takes $\langle M_1, M_2 \rangle$ as input When does M_1 equal M_2 ?

Let's prove that $\mathrm{SUB}_{\mathrm{TM}}$ is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

Reduce from EQ_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide EQ_{TM} as follows:

1. D takes $\langle M_1, M_2 \rangle$ as input

When does
$$M_1$$
 equal M_2 ? $L(M_1) = L(M_2) \Leftrightarrow L(M_1) \subseteq L(M_2) \land L(M_2) \subseteq L(M_1)$

Let's prove that SUB_{TM} is undecidable

$$\mathrm{SUB}_{\mathrm{TM}} = \{ \langle \textit{M}_1, \textit{M}_2 \rangle | \textit{L}(\textit{M}_1) \subseteq \textit{L}(\textit{M}_2) \}$$

Reduce from EQ_{TM} : AFSOC SUB_{TM} is decided by machine M_S . We will construct a machine D to decide EQ_{TM} as follows:

1. D takes $\langle M_1, M_2 \rangle$ as input

```
When does M_1 equal M_2? L(M_1) = L(M_2) \Leftrightarrow L(M_1) \subseteq L(M_2) \land L(M_2) \subseteq L(M_1) \langle M_1, M_2 \rangle \in \mathrm{EQ_{TM}} \Leftrightarrow \langle M_1, M_2 \rangle, \langle M_2, M_1 \rangle \in \mathrm{SUB_{TM}}
```

Let's prove that SUB_{TM} is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

- 1. D takes $\langle M_1, M_2 \rangle$ as input
- 2. Use M_S to check if $\langle M_1, M_2 \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ and $\langle M_2, M_1 \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ "Do M_1 and M_2 contain each other?"

Let's prove that SUB_{TM} is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

- 1. D takes $\langle M_1, M_2 \rangle$ as input
- 2. Use M_S to check if $\langle M_1, M_2 \rangle \in SUB_{TM}$ and $\langle \textit{M}_2, \textit{M}_1 \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ "Do \textit{M}_1 and \textit{M}_2 contain each other?"

 - 2.1 If M_S accepts $\langle M_1, M_2 \rangle$ and $\langle M_2, M_1 \rangle$, then D accepts $\langle M_1, M_2 \rangle$

Let's prove that SUB_{TM} is undecidable

$$SUB_{TM} = \{\langle M_1, M_2 \rangle | L(M_1) \subseteq L(M_2)\}$$

- 1. D takes $\langle M_1, M_2 \rangle$ as input
- 2. Use M_S to check if $\langle M_1, M_2 \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ and $\langle M_2, M_1 \rangle \in \mathrm{SUB}_{\mathrm{TM}}$ "Do M_1 and M_2 contain each other?"
 - 2.1 If M_S accepts $\langle M_1, M_2 \rangle$ and $\langle M_2, M_1 \rangle$, then D
 - accepts $\langle M_1, M_2 \rangle$ and $\langle M_2, M_1 \rangle$, then D
 - 2.2 Otherwise, *D* rejects $\langle M_1, M_2 \rangle$

$$\begin{aligned} & \mathsf{EQ}_{\mathsf{TM}} = \{ < \mathsf{M}_1, \ \mathsf{M}_2 > \mid \mathsf{L}(\mathsf{M}_1) = \mathsf{L}(\mathsf{M}_2) \} \\ & \mathsf{SUB}_{\mathsf{TM}} = \{ < \mathsf{M}_1, \ \mathsf{M}_2 > \mid \mathsf{L}(\mathsf{M}_1) \subseteq \mathsf{L}(\mathsf{M}_2) \} \end{aligned}$$

If we can decide SUB_{TM} , we can decide EQ_{TM}

Reducibility

Recap: If we could solve certain problems, we would be able to solve other problems

Reducibility

Recap: If we could solve certain problems, we would be able to solve other problems

▶ We can use reducibility to prove undecidability

Reducibility

Recap: If we could solve certain problems, we would be able to solve other problems

- We can use reducibility to prove undecidability
- ▶ If $A \leq_T B$ and A is known to be undecidable, then B must also be undecidable